

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MCS 205 - Basic Linear Algebra

SECOND MIDTERM EXAMINATION 17.12.2015

STUDENT NUMBER: NAME-SURNAME: SIGNATURE: INSTRUCTOR: DURATION: 110 minutes

Question	Grade	Out of
1		25
2		20
3		25
4		20
5		20
Total		110

IMPORTANT NOTES:

- 1) Please make sure that you have written your student number and name above.
- 2) Check that the exam paper contains 5 problems.

3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1. Let W be the subspace of \mathbb{R}^3 spanned by the following vectors

 $v_1 = (1, 4, -2), \quad v_2 = (2, -3, 1), \quad v_3 = (-8, 12, -4), \quad v_4 = (1, 37, -17)$

- (a) Find a basis S for W.
- (b) Express each vector v_i not in S as a linear combination of the vectors in S.
- (c) Find a basis T for \mathbb{R}^3 containing S.

Question 2. Let

$$A = \begin{bmatrix} 1 & 3 & -2 & -5 & 2 & 1 \\ 3 & 9 & -5 & -13 & 6 & 3 \\ -2 & -6 & 8 & 18 & -4 & 1 \end{bmatrix}$$

- (a) Find a basis for the row space of A.
- (b) Find a basis for the column space of A.
- (c) Find a basis for the null space of A.
- (d) Find the rank and the nullity of A.

Question 3.

•

(a) Consider the basis $S = \{(1,0,1), (0,1,-2), (0,1,3)\}$ and $T = \{(2,1,0), (1,0,3), (0,1,0)\}.$

i) Find a transition matrix Q from T to S.

ii) If
$$[v]_T = \begin{bmatrix} 3\\ 2\\ -7 \end{bmatrix}$$
, find $[v]_S$ by using the transition matrix in (i).

(b)Given ordered bases $C = \{u_1, u_2, u_3\}, D = \{w_1, w_2, w_3\}$ with the transition matrix

$$P_{D \leftarrow C} = \begin{bmatrix} 1 & -1 & 2\\ 1 & 0 & -3\\ 2 & 5 & -4 \end{bmatrix}$$

Write down the vector $2u_1 - 3u_2 + u_3$ as a linear combination of w_1, w_2 and w_3 .

Question 4.)

•

(a) Let $S = \{v_1, v_2, v_3\}$ be a basis for the finite dimensional vector space V and $B = \{u_1, u_2, u_3\}, C = \{w_1, w_2, w_3\}$ be subsets of V where

 $u_{1} = v_{1} + v_{2} \qquad w_{1} = v_{1} + v_{2}$ $u_{2} = v_{1} + 2v_{2} + v_{3} \qquad w_{2} = v_{1} - v_{2}$ $u_{3} = 3v_{2} - v_{3} \qquad w_{3} = -v_{1} - v_{2} + v_{3}$

- i) Show that B is linearly independent.
- ii) Show that C spans V.

(b)Let $\{u_1, u_2, u_3, u_4\}$ be a basis for a vector space V. Find dimension of U where $U = \text{span}\{u_1 + 2u_2 + u_3 + u_4, u_1 + 3u_2 + u_3 + 2u_4, 3u_1 + 4u_2 + 2u_3, 3u_1 + 5u_2 + 2u_3 + u_4\}.$

Question 5.

•

(a)Let $M_{2\times 2}$ be the vector space of all 2×2 matrices whose entries are real numbers. Let

$$W = \{ A \in M_{2 \times 2} : A^T = -A \}.$$

- i) Show that W a subspace of $M_{2\times 2}$.
- ii) Find a basis for W. What is the dimension of W?

(b) Let
$$W = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad = 0 \right\}$$
. Is W a subspace of $M_{2 \times 2}$?