EXERCISE SET I

1. Solve the linear system below:

x	+	y	+	2z	—	w	=	0
2x	+	2y	+	2z	—	w	=	-1
		y			_	2w	=	0
4x	_	2y			_	2w	=	1

2. Solve the system:

3. Solve the system:

4. Let

$$A = \left[\begin{array}{rrrr} a & 0 & b & 2 \\ a & a & 4 & 4 \\ 0 & a & 2 & b \end{array} \right]$$

be the augmented matrix of some linear system of equations. For which values of "a" and "b" does the system have

- a) a unique solution?
- **b**) a one-parameter solution?
- c) a two-parameter solution?
- d) no solution?

5. Solve the systems of linear equations by Gaussian and by Gauss-Jordan eliminations

 $3x_1 - 3x_2 + 12x_3 +$ $3x_4 =$ 6 $x_1 - x_2 - x_3 =$ 8 $3x_1 + 2x_2 + 12x_3 +$ $8x_4 = 46$ $6x_1 - 5x_2 - 3x_3 =$ 55b) a) $4x_3 +$ $2x_4 = 10$ + x_1 $7x_1 - 6x_2 - 4x_3 =$ 63 $9x_1 - 4x_2 + 36x_3 + 14x_4 = 58$ $x_1 + 2x_2 +$ 0 $x_3 =$ x_1 $+ x_3 = 1$ $x_3 = -2$ $-x_1 + 2x_2 +$ d) $5x_1 + 3x_2 + 2x_3 = 3$ c) x_1 + $x_2 + 2x_3 =$ -1 $x_1 + x_2$ = 1

6. For which values of a does the system

have

- a) a unique solution?
- b) infinitely many solutions?

7) Solve the following systems, where a, b, and c are constants.

	9			~		x_1	+	x_2	+	x_3	= a
a)	$\frac{\Delta x}{2\pi}$	+	y	= a	b)	$2x_1$			+	$2x_3$	= b
	5x +	0y	$\equiv 0$				$3x_2$	+	$3x_3$	= c	

8) For which values of a will the following system have no solutions? Exactly one solutions? Infinitely many solutions?

9) Solve the following system of nonlinear equations for the unknown angles α , β , and γ , where $0 \le \alpha \le 2\pi$, $0 \le \beta \le 2\pi$ and $0 \le \gamma \le \pi$.

 $2\sin\alpha - \cos\beta + 3\tan\gamma = 3$ $4\sin\alpha + 2\cos\beta - 2\tan\gamma = 2$ $6\sin\alpha - 3\cos\beta + \tan\gamma = 9.$

Hint: First substitute $x_1 = \sin \alpha$, $x_2 = \cos \beta$ and $x_3 = \tan \gamma$ and solve the resulting linear system in the unknowns x_1 , x_2 and x_3 .

10) For which value(s) of λ does the system of equations

have nontrivial solutions?

11) Solve the following system for x, y and z.

 $\frac{1}{x} + \frac{2}{y} - \frac{4}{z} = 1$ $\frac{2}{x} + \frac{3}{y} + \frac{8}{z} = 0$ $\frac{1}{x} + \frac{9}{y} - \frac{10}{z} = 5$

Hint: Substitute $x_1 = \frac{1}{x}$, $x_2 = \frac{1}{y}$ and $x_3 = \frac{1}{z}$ and solve the linear system in the unknowns x_1 , x_2 and x_3 .

12) Show that if $ad - bc \neq 0$, then the reduced row-echelon form of

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{is} \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

13) For the following system of nonhomogeneous linear equations

a) Find the reduced row echelon form of the augmented matrix of this system;

b) Find its solution in the parametric form.

14) For which values of parameter λ the following homogeneous system of linear equations has a nontrivial solution?

15)

a) Determine for which values of parameter a the following system of linear equations is consistent?

$2x_1$	+	x_2	+	x_3	+	$2x_4$	=	10
x_1	_	x_2	+	x_3	_	$3x_4$	=	-20
$3x_1$	+	$2x_2$	—	x_3	+	x_4	=	16
$5x_1$	+	$2x_2$	—	$2x_3$	_	$3x_4$		= a

b) For those values of the parameter a for which the system is consistent, find all solutions of the system.

16) For the following nonhomogeneous system of linear equations

a) Find the reduced row-echelon form of the augmented matrix of the system.

b) Find the solution of this system in the parametric form.

17) The following matrices are obtained as a result of row reduction of the augmented matrices of two systems of linear equations:

[1	2	0	3	-4	0 -		Γ1	3	0	0	5]	
0	-1	9	4	2	7		0	0	1	0	4	
0	0	0	0	1	0	,	0	0	0	1	2	
1	2	0	3	4	8		0	0	0	0	0	

a) Complete the row reduction to obtain the reduced row echelon matrices;

b) Determine if the system is consistent;

c) For each consistent system find the solution in the parametric form.

18) Find the solution to the system of linear equations

x_1	_	$7x_4$	+	$8x_5$	=	0
x_2	+	$2x_3$	+	$2x_4$	=	0
x_3	+	x_4	_	x_5	=	0

in the parametric form.