Exercise Set I

1. Solve the linear system below:

$$
\left.\begin{array}{rl}
x+y+2 z-w & =0 \\
2 x+2 y+2 z-w & =-1 \\
y-2 w & =0 \\
4 x-2 y & -2 w
\end{array}\right) 1 .
$$

2. Solve the system:

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}+x_{4}=0 \\
2 x_{1}-3 x_{2}+x_{3}-8 x_{4}=1 .
\end{array}
$$

3. Solve the system:

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3}+x_{4} & =1 \\
2 x_{1}+x_{2}-x_{3}-3 x_{4} & =2 \\
2 x_{2}+x_{3}+x_{4} & =0 .
\end{aligned}
$$

4. Let

$$
A=\left[\begin{array}{llll}
a & 0 & b & 2 \\
a & a & 4 & 4 \\
0 & a & 2 & b
\end{array}\right]
$$

be the augmented matrix of some linear system of equations. For which values of "a" and "b" does the system have
a) a unique solution?
b) a one-parameter solution?
c) a two-parameter solution?
d) no solution?
5. Solve the systems of linear equations by Gaussian and by Gauss-Jordan eliminations
a) $\begin{aligned} x_{1}-x_{2}-x_{3} & =8 \\ 6 x_{1}-5 x_{2}-3 x_{3} & =55 \\ 7 x_{1}-6 x_{2}-4 x_{3} & =63\end{aligned}$
b) $\begin{aligned} 3 x_{1}-3 x_{2}+12 x_{3}+3 x_{4}=6 \\ 3 x_{1}+2 x_{2}+12 x_{3}+8 x_{4}=46\end{aligned}$
$7 x_{1}-6 x_{2}-4 x_{3}=63$
b) $\begin{aligned} 3 x_{1}+2 x_{2}+12 x_{3}+8 x_{4} & =46 \\ x_{1} & +4 x_{3}+2 x_{4}\end{aligned}=10$

d) $\begin{aligned} x_{1}+x_{3} & =1 \\ 5 x_{1}+3 x_{2}+2 x_{3} & =3 \\ x_{1}+x_{2} & =1\end{aligned}$
6. For which values of a does the system

$$
\begin{array}{r}
3 x+a y=0 \\
(a-2) x+5 y=0
\end{array}
$$

have
a) a unique solution?
b) infinitely many solutions?
7) Solve the following systems, where a, b, and c are constants.
a) $\begin{aligned} 2 x+y & =a \\ 3 x+6 y & =b\end{aligned}$
b) $\begin{aligned} x_{1}+x_{2} & +x_{3}=a \\ 2 x_{1} & +2 x_{3}=b \\ & 3 x_{2}\end{aligned}$
8) For which values of a will the following system have no solutions? Exactly one solutions? Infinitely many solutions?

$$
\begin{array}{rlrl}
x+2 y- & 3 z & =4 \\
3 x-y+ & 5 z & = & 2 \\
4 x+y+ & \left(a^{2}-14\right) z & =a+2 .
\end{array}
$$

9) Solve the following system of nonlinear equations for the unknown angles α, β, and γ, where $0 \leq \alpha \leq 2 \pi, 0 \leq \beta \leq 2 \pi$ and $0 \leq \gamma \leq \pi$.

$$
\begin{array}{r}
2 \sin \alpha-\cos \beta+3 \tan \gamma=3 \\
4 \sin \alpha+2 \cos \beta-2 \tan \gamma=2 \\
6 \sin \alpha-3 \cos \beta+\tan \gamma=9 .
\end{array}
$$

Hint: First substitute $x_{1}=\sin \alpha, x_{2}=\cos \beta$ and $x_{3}=\tan \gamma$ and solve the resulting linear system in the unknowns x_{1}, x_{2} and x_{3}.
10) For which value(s) of λ does the system of equations

$$
\begin{aligned}
y & =0 \\
(\lambda-3) x+y & =0
\end{aligned}
$$

have nontrivial solutions?
11) Solve the following system for x, y and z.

$$
\begin{aligned}
& \frac{1}{x}+\frac{2}{y}-\frac{4}{z}=1 \\
& \frac{2}{x}+\frac{3}{y}+\frac{8}{z}=0 \\
& \frac{1}{x}+\frac{9}{y}-\frac{10}{z}=5
\end{aligned}
$$

Hint: Substitute $x_{1}=\frac{1}{x}, x_{2}=\frac{1}{y}$ and $x_{3}=\frac{1}{z}$ and solve the linear system in the unknowns x_{1}, x_{2} and x_{3}.
12) Show that if $a d-b c \neq 0$, then the reduced row-echelon form of

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { is }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

13) For the following system of nonhomogeneous linear equations

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+x_{4}+x_{5}=-2 \\
x_{2}+x_{3}-x_{4}-x_{5}=-1 \\
-x_{1}+x_{2}-x_{3}-x_{4}+2 x_{5}=2
\end{array}
$$

a) Find the reduced row echelon form of the augmented matrix of this system;
b) Find its solution in the parametric form.
14) For which values of parameter λ the following homogeneous system of linear equations has a nontrivial solution?

$$
\begin{aligned}
\lambda x-y & =0 \\
x-2 y+\lambda z & =0 \\
x-y-z & =0 .
\end{aligned}
$$

15)

a) Determine for which values of parameter a the following system of linear equations is consistent?

$$
\begin{array}{r}
2 x_{1}+x_{2}+x_{3}+2 x_{4}=r \\
x_{1}-x_{2}+x_{3}-3 x_{4}=-20 \\
3 x_{1}+2 x_{2}-x_{3}+x_{4}= \\
5 x_{1}+2 x_{2}-2 x_{3}-3 x_{4}=a \\
\end{array}
$$

b) For those values of the parameter a for which the system is consistent, find all solutions of the system.
16) For the following nonhomogeneous system of linear equations

$$
\begin{array}{r}
x_{1}-x_{2}+x_{3}-2 x_{4}=-1 \\
2 x_{1}-2 x_{2}+3 x_{3}+3 x_{4}=2 \\
4 x_{1}-4 x_{2}+5 x_{3}+7 x_{4}=0
\end{array}
$$

a) Find the reduced row-echelon form of the augmented matrix of the system.
b) Find the solution of this system in the parametric form.
17) The following matrices are obtained as a result of row reduction of the augmented matrices of two systems of linear equations:

$$
\left[\begin{array}{rrrrrr}
1 & 2 & 0 & 3 & -4 & 0 \\
0 & -1 & 9 & 4 & 2 & 7 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 0 & 3 & 4 & 8
\end{array}\right], \quad\left[\begin{array}{lllll}
1 & 3 & 0 & 0 & 5 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

a) Complete the row reduction to obtain the reduced row echelon matrices;
b) Determine if the system is consistent;
c) For each consistent system find the solution in the parametric form.
18) Find the solution to the system of linear equations

$$
\begin{aligned}
& x_{1}-7 x_{4}+8 x_{5}=0 \\
& x_{2}+2 x_{3}+2 x_{4}=0 \\
& x_{3}+x_{4}-x_{5}=0
\end{aligned}
$$

in the parametric form.

