Exercise Set II

1. Consider the matrices:

$$
A=\left[\begin{array}{rr}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{rr}
4 & -1 \\
0 & 2
\end{array}\right], C=\left[\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right], D=\left[\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 0 & 1 \\
3 & 2 & 4
\end{array}\right], E=\left[\begin{array}{rrr}
6 & 1 & 3 \\
-1 & 1 & 2 \\
4 & 1 & 3
\end{array}\right]
$$

Compute the following (where possible).
a) $D+E$
b) $D-E$
c) 5 A
d) $-7 C$
e) $2 B-C$
f) $4 E-2 D$
g) $-3(D+2 E)$
h) $A-A$
i) $\operatorname{tr}(D)$
j) $\operatorname{tr}(D-3 E)$
k) $4 \operatorname{tr}(7 B)$

1) $\operatorname{tr}(A)$
2. Using the matrices in Exercise 1, compute the following (where possible).
a) $2 A^{T}+C$
b) $D^{T}-E^{T}$
c) $(D-E)^{T}$
d) $B^{T}+5 C^{T}$
e) $\frac{1}{2} C^{T}-\frac{1}{4} A$
f) $B-B^{T}$
g) $2 E^{T}-3 D^{T}$
h) $\left(2 E^{T}-3 D^{T}\right)^{T}$
3. Using the matrices in Exercise 1, compute the following (where possible).
a) $A B$
b) $B A$
c) $(3 E) D$
d) $(A B) C$
e) $A(B C)$
f) $C C^{T}$
g) $(D A)^{T}$
h) $\left(C^{T} B\right) A^{T}$
i) $\operatorname{tr}\left(D D^{T}\right)$
j) $\operatorname{tr}\left(4 E^{T}-D\right)$
k) $\operatorname{tr}\left(C^{T} A^{T}+2 E^{T}\right)$
4. Using the matrices in Exercise 1, compute the following (where possible).
a) $\left(2 D^{T}-E\right) A$
b) $(4 B) C+2 B$
c) $(-A C)^{T}+5 D^{T}$
d) $\left(B A^{T}-2 C\right)^{T}$
e) $B^{T}\left(C C^{T}-A^{T} A\right)$
f) $D^{T} E^{T}-(E D)^{T}$
5. If A and B are partitioned into sub-matrices, for example,

$$
A=\left[\begin{array}{l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{l|l}
B_{11} & B_{12} \\
\hline B_{21} & B_{22}
\end{array}\right]
$$

then $A B$ can be expressed as

$$
A B=\left[\begin{array}{l|l}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
\hline A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
$$

provided the sizes of the sub-matrices of A and B are such that the indicated operations can be performed. This method of multiplying partitioned matrices is called block multiplication. In each part compute the product by block multiplication. Check your results by multiplying directly.
а) $A=\left[\begin{array}{rr|rr}-1 & 2 & 1 & 5 \\ 0 & -3 & 4 & 2 \\ \hline 1 & 5 & 6 & 1\end{array}\right], \quad B=\left[\begin{array}{rr|r}2 & 1 & 4 \\ -3 & 5 & 2 \\ \hline 7 & -1 & 5 \\ 0 & 3 & -3\end{array}\right]$.
b) $A=\left[\begin{array}{rrr|r}-1 & 2 & 1 & 5 \\ \hline 0 & -3 & 4 & 2 \\ 1 & 5 & 6 & 1\end{array}\right], \quad B=\left[\begin{array}{rr|r}2 & 1 & 4 \\ -3 & 5 & 2 \\ 7 & -1 & 5 \\ \hline 0 & 3 & -3\end{array}\right]$.
6. Find the 4×4 matrix $A=\left[a_{i j}\right]$ whose entries satisfy the stated condition.
a) $a_{i j}=i+j$
b) $a_{i j}=i^{j-1}$
c) $a_{i j}=\left\{\begin{array}{r}1 \text { if }|i-j|>1 \\ -1 \text { if }|i-j| \leq 1\end{array}\right.$
7. Prove: If A and B are $n \times n$ matrices, then $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
8. How many 3×3 matrices A can you find such that

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x+y \\
x-y \\
0
\end{array}\right]
$$

for all choices of x, y, and $z ?$
9. A matrix B is said to be a square root of a matrix A if $B B=A$.
a) Find two square roots of $A=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$.
b) How many different square roots can you find of $A=\left[\begin{array}{ll}5 & 0 \\ 0 & 9\end{array}\right]$?
10. Let $A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right], \quad B=\left[\begin{array}{rr}2 & -3 \\ 4 & 4\end{array}\right]$ and $C=\left[\begin{array}{rr}6 & 4 \\ -2 & -1\end{array}\right]$. Show:
a) $(A B)^{-1}=B^{-1} A^{-1}$
b) $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
11. In each part use the given information to find A.
a) $A^{-1}=\left[\begin{array}{rr}2 & -1 \\ 3 & 5\end{array}\right]$
b) $(7 A)^{-1}=\left[\begin{array}{rr}-3 & 7 \\ 1 & -2\end{array}\right]$
c) $\left(5 A^{T}\right)^{-1}=\left[\begin{array}{rr}-3 & -1 \\ 5 & 2\end{array}\right]$
c) $(I+2 A)^{-1}=\left[\begin{array}{rr}-1 & 2 \\ 4 & 5\end{array}\right]$
12. Let $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$. In each part find $p(A)$.
a) $p(x)=x-2$
b) $p(x)=2 x^{2}-x+1$
c) $p(x)=x^{3}-2 x+4$
13. Find the inverse of $\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.
14. Find the inverse of $\left[\begin{array}{ll}\frac{1}{2}\left(e^{x}+e^{-x}\right) & \frac{1}{2}\left(e^{x}-e^{-x}\right) \\ \frac{1}{2}\left(e^{x}-e^{-x}\right) & \frac{1}{2}\left(e^{x}+e^{-x}\right)\end{array}\right]$.
15. Let A and B be square matrices such that $A B=0$. Show that if A is invertible, then $B=0$.
16. If A is a square matrix and n is a positive integer, is it true that $\left(A^{n}\right)^{T}=\left(A^{T}\right)^{n}$? Justify your answer.
17. Let A, B, and 0 be 2×2 matrices. Assuming that A is invertible, find a matrix C so that

$$
\left[\begin{array}{c|c}
A^{-1} & 0 \\
\hline C & A^{-1}
\end{array}\right]
$$

is the inverse of the partitioned matrix

$$
\left[\begin{array}{c|c}
A & 0 \\
\hline B & A
\end{array}\right]
$$

18. Show that if A is invertible and $A B=A C$, then $B=C$.
19. Which of the following are elementary matrices?
a) $\left[\begin{array}{rr}1 & 0 \\ -5 & 1\end{array}\right]$
b) $\left[\begin{array}{rr}-5 & 1 \\ 1 & 0\end{array}\right]$
c) $\left[\begin{array}{rr}1 & 0 \\ 0 & \sqrt{3}\end{array}\right]$
d) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
e) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
f) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right]$
g) $\left[\begin{array}{llll}2 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
20. Consider the matrices

$$
A=\left[\begin{array}{rrr}
3 & 4 & 1 \\
2 & -7 & -1 \\
8 & 1 & 5
\end{array}\right], \quad B=\left[\begin{array}{rrr}
8 & 1 & 5 \\
2 & -7 & -1 \\
3 & 4 & 1
\end{array}\right], \quad C=\left[\begin{array}{rrr}
3 & 4 & 1 \\
2 & -7 & -1 \\
2 & -7 & 3
\end{array}\right]
$$

Find elementary matrices, E_{1}, E_{2}, E_{3} and E_{4} such that
a) $E_{1} A=B$
b) $E_{2} B=A$
c) $E_{3} A=C$
d) $E_{4} C=A$
21. Find the inverses of the matrices, if any:
a) $\left[\begin{array}{rrr}\frac{1}{5} & \frac{1}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & -\frac{4}{5} & \frac{1}{10}\end{array}\right]$,
b) $\left[\begin{array}{rrr}\sqrt{2} & 3 \sqrt{2} & 0 \\ -4 \sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right]$,
c) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 7\end{array}\right]$
d) $\left[\begin{array}{rrrr}-8 & 17 & 2 & \frac{1}{3} \\ 4 & 0 & \frac{2}{5} & -9 \\ 0 & 0 & 0 & 0 \\ -1 & 13 & 4 & 2\end{array}\right]$
e) $\left[\begin{array}{rrrr}0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 3 & 0 \\ 2 & 1 & 5 & -3\end{array}\right]$
22. Solve the following general system by inverting the coefficient matrix.

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =b_{1} \\
x_{1}-x_{2}+x_{3} & =b_{2} \\
x_{1}+x_{2} & =b_{3}
\end{aligned}
$$

Use the resulting formulas to find the solution if
a) $b_{1}=-1, b_{2}=3, b_{3}=4$
b) $b_{1}=5, b_{2}=0, b_{3}=0$
c) $b_{1}=-1, b_{2}=-1, b_{3}=3$
23. Find conditions that b 's must satisfy for the systems below to be consistent.
a) $\begin{aligned} & 6 x_{1}-4 x_{2}=b_{1} \\ & 3 x_{1}-2 x_{2}=b_{2}\end{aligned}$
b) $\begin{aligned} & x_{1}-2 x_{2}+5 x_{3}=b_{1} \\ & 4 x_{1}-5 x_{2}+8 x_{3}=b_{2} \\ &-3 x_{1}+3 x_{2}-3 x_{3}=b_{3}\end{aligned}$
c) $\begin{aligned} & x_{1}-2 x_{2}-x_{3}=b_{1} \\ &-4 x_{1}+5 x_{2}+2 x_{3}=b_{2} \\ &-4 x_{1}+7 x_{2}+4 x_{3}=b_{3}\end{aligned}$
d) $\begin{aligned} x_{1} & -x_{2}+3 x_{3}+2 x_{4}=b_{1} \\ -2 x_{1} & +x_{2}+5 x_{3}+x_{4}=b_{2} \\ -3 x_{1} & +2 x_{2}+2 x_{3}-x_{4}=b_{3} \\ 4 x_{1} & -3 x_{2}+x_{3}+3 x_{1}=b_{4}\end{aligned}$
24. Consider the matrices

$$
A=\left[\begin{array}{rrr}
2 & 1 & 2 \\
2 & 2 & -2 \\
3 & 1 & 1
\end{array}\right] \quad \text { and } \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

a) Show that the equation $A x=x$ can be rewritten as $(A-I) x=0$ and use this result to solve $A x=x$ for x.
b) Solve $A x=4 x$.
25. Solve the following matrix equation for X.

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 3 & 0 \\
0 & 2 & -1
\end{array}\right] X=\left[\begin{array}{rrrrr}
2 & -1 & 5 & 7 & 8 \\
4 & 0 & -3 & 0 & 1 \\
3 & 5 & -7 & 2 & 1
\end{array}\right]
$$

Hint:
Method 1) Denote

$$
X=\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{15}
\end{array}\right]
$$

Then, reduce the matrix equation to a system of linear equations in 15 unknown and then solve by Gauss-Jordan (or Gaussian) elimination.
Method 2) Find A^{-1} if any, and then multiply both sides of the equality by A^{-1} (from left).
26. Find all values of a, b and c for which A is symmetric.

$$
A=\left[\begin{array}{ccc}
2 & a-2 b+2 c & 2 a+b+c \\
3 & 5 & a+c \\
0 & -2 & 7
\end{array}\right]
$$

27. Find all values of a and b for which A and B are both not invertible.

$$
A=\left[\begin{array}{cc}
a+b-1 & 0 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{cc}
5 & 0 \\
0 & 2 a-3 b-7
\end{array}\right]
$$

28. Fact: The product of two symmetric matrices is symmetric if and only if the matrices commute. Consider

$$
A=\left[\begin{array}{rr}
1 & -3 \\
-3 & 2
\end{array}\right], \quad B=\left[\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right], \quad C=\left[\begin{array}{rr}
2 & -1 \\
-1 & 3
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right]
$$

Note that A, B, C and D are symmetric matrices. Show that $A B$ is not symmetric while $C D$ is symmetric. Are they true that $A B \neq B A$ and $C D=D C$?
29. Show that A and B commute if $a-d=7 b$. (Hint: Use the fact in Exercise 28).

$$
A=\left[\begin{array}{rr}
2 & 1 \\
1 & -5
\end{array}\right], \quad B=\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]
$$

30. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Determine whether A is symmetric.
a) $a_{i j}=i^{2}+j^{2}$
b) $a_{i j}=i^{2}-j^{2}$
c) $a_{i j}=2 i+2 j$
d) $a_{i j}=2 i^{2}+2 j^{3}$
31) Find positive integers that satisfy

$$
\begin{aligned}
x+y+z & =9 \\
x+5 y+10 z & =44
\end{aligned}
$$

32. Solve for x, y and z.

$$
\begin{array}{r}
x y-2 \sqrt{y}+3 z y=8 \\
2 x y-3 \sqrt{y}+2 z y=7 \\
-x y+\sqrt{y}+2 z y=4
\end{array}
$$

33. Find a matrix K such that $A K B=C$ given that

$$
A=\left[\begin{array}{rr}
1 & 4 \\
-2 & 3 \\
1 & -2
\end{array}\right], \quad B=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 1 & -1
\end{array}\right], \quad C=\left[\begin{array}{rrr}
8 & 6 & -6 \\
6 & -1 & 1 \\
-4 & 0 & 0
\end{array}\right]
$$

34. How should the coefficients a, b and c be chosen so that the system

$$
\begin{aligned}
a x+b y-3 z & =-3 \\
-2 x-b y+c z & =-1 \\
a x+3 y-c z & =-3
\end{aligned}
$$

has the solution $x=1, y=-1$ and $z=2$?
35. Find values of a, b and c so that the graph of the polynomial $p(x)=a x^{2}+b x+c$ passes through the point $(-1,0)$ and has a horizontal tangent at $(2,-9)$.
36. Find the values of A, B and C that will make the equation

$$
\frac{x^{2}+x-2}{(3 x-1)\left(x^{2}+1\right)}=\frac{A}{3 x-1}+\frac{B x+C}{x^{2}+1} .
$$

an identity.
37. Consider the matrices, $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & -1 & 1 \\ 1 & 1 & 0\end{array}\right], \quad B=\left[\begin{array}{rrr}-1 & 2 & 3 \\ 4 & 5 & -1 \\ 0 & 1 & 2\end{array}\right], \quad b=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$. Find
a) $2 A-B^{T}$.
b) A^{-1}.
c) Use A^{-1} found in part \mathbf{b}) to solve the system $A x=b$.
38. Let $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1 \\ 2 & 0\end{array}\right], \quad B=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 1 & -2 & 1\end{array}\right], \quad C=A B$. Let $p(x)=3+2 x^{2}-x^{3}$. Find $P(C)$.

Note: If A is a square matrix, and if $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is any polynomial, then we define $p(A)=$ $a_{0} I+a_{1} A+\cdots+a_{n} A^{n}$ where I is the identity matrix of suitable size.

