1. Consider the matrices:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}.$$

Compute the following (where possible).

a) $D + E$	b) $D-E$	c) 5A	d) $-7C$
e) $2B - C$	f) $4E - 2D$	g) $-3(D+2E)$	h) $A - A$
i) $tr(D)$	j) $tr(D - 3E)$	k) $4tr(7B)$	1) $tr(A)$

2. Using the matrices in Exercise 1, compute the following (where possible). **a)** $2A^T + C$ **b)** $D^T - E^T$ **c)** $(D - E)^T$ **d)** $B^T + 5C^T$ **e)** $\frac{1}{2}C^T - \frac{1}{4}A$ **f)** $B - B^T$ **g)** $2E^T - 3D^T$ **h)** $(2E^T - 3D^T)^T$

3. Using the matrices in Exercise 1, compute the following (where possible).

a)
$$AB$$
b) BA c) $(3E)D$ d) $(AB)C$ e) $A(BC)$ f) CC^T g) $(DA)^T$ h) $(C^TB)A^T$ i) $tr(DD^T)$ j) $tr(4E^T - D)$ k) $tr(C^TA^T + 2E^T)$

4. Using the matrices in Exercise 1, compute the following (where possible). a) $(2D^T - E)A$ b) (4B)C + 2B c) $(-AC)^T + 5D^T$ d) $(BA^T - 2C)^T$ e) $B^T(CC^T - A^TA)$ f) $D^TE^T - (ED)^T$

5. If A and B are partitioned into sub-matrices, for example,

$$A = \begin{bmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{bmatrix} \text{ and } B = \begin{bmatrix} B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{bmatrix}$$

then AB can be expressed as

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ \hline A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

provided the sizes of the sub-matrices of A and B are such that the indicated operations can be performed. This method of multiplying partitioned matrices is called **block multiplication**. In each part compute the product by block multiplication. Check your results by multiplying directly.

a)
$$A = \begin{bmatrix} -1 & 2 & | & 1 & 5 \\ 0 & -3 & | & 4 & 2 \\ \hline 1 & 5 & | & 6 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & | & 4 \\ -3 & 5 & 2 \\ \hline 7 & -1 & 5 \\ 0 & 3 & | & -3 \end{bmatrix}$.
b) $A = \begin{bmatrix} -1 & 2 & 1 & | & 5 \\ \hline 0 & -3 & 4 & 2 \\ 1 & 5 & 6 & | & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & | & 4 \\ -3 & 5 & 2 \\ \hline 7 & -1 & 5 \\ \hline 0 & 3 & | & -3 \end{bmatrix}$.

6. Find the 4×4 matrix $A = [a_{ij}]$ whose entries satisfy the stated condition.

a)
$$a_{ij} = i + j$$

b) $a_{ij} = i^{j-1}$
c) $a_{ij} = \begin{cases} 1 \text{ if } |i-j| > 1 \\ -1 \text{ if } |i-j| \le 1 \end{cases}$

7. Prove: If A and B are $n \times n$ matrices, then tr(A + B) = tr(A) + tr(B).

8. How many 3×3 matrices A can you find such that

$$A\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} x+y\\ x-y\\ 0\end{bmatrix}$$

for all choices of x, y, and z?

9. A matrix *B* is said to be a *square root* of a matrix *A* if BB = A. **a)** Find two square roots of $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$. **b)** How many different square roots can you find of $A = \begin{bmatrix} 5 & 0 \\ 0 & 9 \end{bmatrix}$?

10. Let
$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 6 & 4 \\ -2 & -1 \end{bmatrix}$. Shows
a) $(AB)^{-1} = B^{-1}A^{-1}$ **b)** $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

11. In each part use the given information to find A. a) $A^{-1} = \begin{bmatrix} 2 & -1 \end{bmatrix}$ b) $(7A)^{-1} = \begin{bmatrix} -3 & 7 \end{bmatrix}$

a)
$$A^{T} = \begin{bmatrix} 3 & 5 \end{bmatrix}$$

b) $(TA)^{T} = \begin{bmatrix} 1 & -2 \end{bmatrix}$
c) $(5A^{T})^{-1} = \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix}$
c) $(I+2A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$

12. Let $A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$. In each part find p(A).

a) p(x) = x - 2b) $p(x) = 2x^2 - x + 1$ c) $p(x) = x^3 - 2x + 4$ 13. Find the inverse of $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. 14. Find the inverse of $\begin{bmatrix} \frac{1}{2}(e^x + e^{-x}) & \frac{1}{2}(e^x - e^{-x}) \\ \frac{1}{2}(e^x - e^{-x}) & \frac{1}{2}(e^x + e^{-x}) \end{bmatrix}$.

15. Let A and B be square matrices such that AB = 0. Show that if A is invertible, then B = 0.

16. If A is a square matrix and n is a positive integer, is it true that $(A^n)^T = (A^T)^n$? Justify your answer.

17. Let A, B, and 0 be 2×2 matrices. Assuming that A is invertible, find a matrix C so that

$$\begin{bmatrix} A^{-1} & 0 \\ \hline C & A^{-1} \end{bmatrix}$$

is the inverse of the partitioned matrix

$$\left[\begin{array}{c|c} A & 0 \\ \hline B & A \end{array}\right].$$

18. Show that if A is invertible and AB = AC, then B = C.

19. Which of the following are elementary matrices?

$$\mathbf{a}) \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \qquad \mathbf{b}) \begin{bmatrix} -5 & 1 \\ 1 & 0 \end{bmatrix} \qquad \mathbf{c}) \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \end{bmatrix} \qquad \mathbf{d}) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \\ \mathbf{e}) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{f}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 9 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{g}) \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

20. Consider the matrices

$$A = \begin{bmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 8 & 1 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 8 & 1 & 5 \\ 2 & -7 & -1 \\ 3 & 4 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 2 & -7 & 3 \end{bmatrix}$$

Find elementary matrices, E_1 , E_2 , E_3 and E_4 such that **a**) $E_1A = B$ **b**) $E_2B = A$ **c**) $E_3A = C$ **d**) $E_4C = A$

21. Find the inverses of the matrices, if any:

$$\mathbf{a}) \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & -\frac{4}{5} & \frac{1}{10} \end{bmatrix}, \qquad \mathbf{b}) \begin{bmatrix} \sqrt{2} & 3\sqrt{2} & 0 \\ -4\sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \mathbf{c}) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 7 \end{bmatrix}$$
$$\mathbf{d}) \begin{bmatrix} -8 & 17 & 2 & \frac{1}{3} \\ 4 & 0 & \frac{2}{5} & -9 \\ 0 & 0 & 0 & 0 \\ -1 & 13 & 4 & 2 \end{bmatrix} \qquad \mathbf{e}) \begin{bmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 3 & 0 \\ 2 & 1 & 5 & -3 \end{bmatrix}$$

22. Solve the following general system by inverting the coefficient matrix.

Use the resulting formulas to find the solution if

a) $b_1 = -1, b_2 = 3, b_3 = 4$ **b)** $b_1 = 5, b_2 = 0, b_3 = 0$ **c)** $b_1 = -1, b_2 = -1, b_3 = 3$

23. Find conditions that b's must satisfy for the systems below to be consistent.

a)
$$\begin{array}{l} 6x_1 - 4x_2 = b_1 \\ 3x_1 - 2x_2 = b_2 \end{array}$$
b)
$$\begin{array}{l} x_1 - 2x_2 + 5x_3 = b_1 \\ 4x_1 - 5x_2 + 8x_3 = b_2 \\ -3x_1 + 3x_2 - 3x_3 = b_3 \end{array}$$
c)
$$\begin{array}{l} x_1 - 2x_2 - x_3 = b_1 \\ -4x_1 + 5x_2 + 2x_3 = b_2 \\ -4x_1 + 7x_2 + 4x_3 = b_3 \end{array}$$
d)
$$\begin{array}{l} x_1 - x_2 + 3x_3 + 2x_4 = b_1 \\ -2x_1 + x_2 + 5x_3 + x_4 = b_2 \\ -3x_1 + 2x_2 + 5x_3 - x_4 = b_3 \\ 4x_1 - 3x_2 + x_3 + 3x_1 = b_4 \end{array}$$

24. Consider the matrices

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & -2 \\ 3 & 1 & 1 \end{bmatrix} \quad \text{and} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

a) Show that the equation Ax = x can be rewritten as (A - I)x = 0 and use this result to solve Ax = x for x. b) Solve Ax = 4x.

25. Solve the following matrix equation for X.

[1]	-1	1		2	-1	5	7	8 -	1
2	3	0	X =	4	0	-3	0	1	
0	2	-1	X =	3	5	-7	2	1 _	

Hint: Method 1) Denote

$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5\\ x_6 & x_7 & x_8 & x_9 & x_{10}\\ x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

Then, reduce the matrix equation to a system of linear equations in 15 unknown and then solve by Gauss-Jordan (or Gaussian) elimination.

Method 2) Find A^{-1} if any, and then multiply both sides of the equality by A^{-1} (from left).

26. Find all values of a, b and c for which A is symmetric.

$$A = \begin{bmatrix} 2 & a - 2b + 2c & 2a + b + c \\ 3 & 5 & a + c \\ 0 & -2 & 7 \end{bmatrix}$$

27. Find all values of a and b for which A and B are both not invertible.

$$A = \begin{bmatrix} a+b-1 & 0 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 0 \\ 0 & 2a-3b-7 \end{bmatrix}$$

28. Fact: The product of two symmetric matrices is symmetric if and only if the matrices commute. Consider

$$A = \begin{bmatrix} 1 & -3 \\ -3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}.$$

Note that A, B, C and D are symmetric matrices. Show that AB is not symmetric while CD is symmetric. Are they true that $AB \neq BA$ and CD = DC?

29. Show that A and B commute if a - d = 7b. (*Hint: Use the fact in Exercise 28*).

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & -5 \end{array} \right], \quad B = \left[\begin{array}{cc} a & b \\ b & d \end{array} \right]$$

30. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Determine whether A is symmetric. b) $a_{ij} = i^2 - j^2$ d) $a_{ij} = 2i^2 + 2j^3$ **a**) $a_{ij} = i^2 + j^2$

c) $a_{ij} = 2i + 2j$

31) Find positive integers that satisfy

32. Solve for x, y and z.

33. Find a matrix K such that AKB = C given that

$$A = \begin{bmatrix} 1 & 4 \\ -2 & 3 \\ 1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 8 & 6 & -6 \\ 6 & -1 & 1 \\ -4 & 0 & 0 \end{bmatrix}.$$

34. How should the coefficients a, b and c be chosen so that the system

ax	+	by	_	3z	=	-3
-2x	—	by	+	cz	=	-1
ax	+	3y	_	cz	=	-3

has the solution x = 1, y = -1 and z = 2?

35. Find values of a, b and c so that the graph of the polynomial $p(x) = ax^2 + bx + c$ passes through the point (-1, 0)and has a horizontal tangent at (2, -9).

36. Find the values of A, B and C that will make the equation

$$\frac{x^2 + x - 2}{(3x - 1)(x^2 + 1)} = \frac{A}{3x - 1} + \frac{Bx + C}{x^2 + 1}$$

an identity.

37. Consider the matrices,
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 5 & -1 \\ 0 & 1 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. Find

a) 2A - $-B^{I}$.

b) A^{-1} .

c) Use A^{-1} found in part b) to solve the system Ax = b.

38. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -2 & 1 \end{bmatrix}$, $C = AB$. Let $p(x) = 3 + 2x^2 - x^3$. Find $P(C)$.

Note: If A is a square matrix, and if $p(x) = a_0 + a_1x + \cdots + a_nx^n$ is any polynomial, then we define p(A) = $a_0I + a_1A + \cdots + a_nA^n$ where I is the identity matrix of suitable size.