Exercise Set IV

VECTORS IN 2-SPACE AND 3-SPACE

1. Find an equation for the plane that contains the line

$$
x=2+t, y=-1-t, z=3 t,-\infty<t<\infty
$$

and is parallel to the line of intersection of the planes

$$
-x+2 y+z=0 \quad \text { and } \quad x+z+2=0 .
$$

2. a) Find an equation for the line L passing through the point $P=(1,0,1)$ and perpendicular to the plane $x-y+z-5=0$.
b) Where does the line L intersect the plane $x-y+z-5=0$?
3. Show that the lines $x-3=4 t, y-4=t, z-1=0, t \in \mathbb{R}$ and $\frac{x+1}{12}=\frac{y-7}{6}=\frac{z-5}{3}$ intersect, and find an equation for the plane containing them.
4. Let $P_{1}=(1,0,0), P_{2}=(0,1,0), P_{3}=(0,0,1), P_{4}=(1,-1,6)$.
a) Find an equation for the plane containing the points P_{1}, P_{2} and P_{3}.
b) Is there any plane containing the points P_{1}, P_{2}, P_{3} and P_{4}.
5. Find an equation for the plane passing through the point $\mathrm{P}=(1,1,1)$ and parallel to the line $\frac{x-1}{2}=\frac{y+2}{4}=z$.
6. Let $\vec{u}=(1,0,-1), \vec{v}=(3,2,1), \vec{w}=(1,1,1)$.
a) Calculate $\vec{u} \cdot \vec{v}$ and $\vec{u} \times \vec{v}$.
b) Find the equation for the plane which contains the following two lines:

$$
x=-1+t, y=1, z=2-t, t \in \mathbb{R} \quad \text { and } \quad x=-1+3 t, y=1+2 t, z=2+t, t \in \mathbb{R} .
$$

c) Find the volume of the parallelepiped determined by the vectors \vec{u}, \vec{v} and \vec{w}.
7. Show that if \vec{u} is a vector from any point on a line to a point P not on the line, and \vec{v} is a vector parallel to the line, then the distance between P and the line is given by $\frac{\|\vec{u} \times \vec{v}\|}{\|\vec{v}\|}$.
8. For the following points in \mathbb{R}^{3}

$$
P=(1,0,-1), Q=(2,4,5), R=(3,1,7),
$$

use the cross product to find
a) a normal vector to the plane passing through P, Q, R, and the equation of this plane,
b) the area of the triangle $P \stackrel{\Delta}{Q} R$,
c) the distance from the origin to this plane.
9. Find the orthogonal projections $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ of $\vec{v}=(1,4)$ on the directional and the normal vectors of the line $y=\sqrt{2} x$. Check that $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}=\vec{v}$.
10. Let the vectors $\vec{u}=\vec{i}+\vec{k}, \vec{v}=-\vec{i}+\vec{j}, \vec{w}=\vec{i}+2 \vec{j}+3 \vec{k}$ be given
a) Use the triple product to verify that the vectors $\vec{u}, \vec{v}, \vec{w}$ lie in the same plane.
b) Find the angle between the vectors \vec{u} and \vec{v}.
11. Suppose \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^{3} with $\|\vec{u}\|=2$ and $\|\vec{v}\|=1$.
a) Find $\left\|\frac{1}{2} \vec{u}-3 \vec{v}\right\|$.
b) Find $\|3 \vec{u} \times(-5 \vec{v})\|$.
12. Find an equation for the plane M that contains the line $x=2+t, y=-1-2 t, z=3-t, t \in \mathbb{R}$ and is perpendicular to the plane $x+3 y-z=0$.
13. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$ and give the geometric interpretation of this equation.
14. Determine whether the planes are parallel.
a) $4 x-y+2 z=5$ and $7 x-3 y+4 z=8$.
b) $x-4 y-3 z-2=0$ and $3 x-12 y-9 z-7=0$.
c) $2 y=8 x-4 z+5$ and $x=\frac{1}{2} z+\frac{1}{4} y$.
15. Determine whether the line and plane are parallel.
a) $x=-5-4 t, y=1-t, z=3+2 t, t \in \mathbb{R}$ and $x+2 y+3 z-9=0$.
b) $x=3 t, y=1+2 t, z=2-t, t \in \mathbb{R}$, and $4 x-y+2 z=1$.
16. Determine whether the planes are perpendicular.
a) $3 x-y+z-4=0$ and $x+2 z=-1$.
b) $x-2 y+3 z=4$ and $-2 x+5 y+4 z=-1$.
17. Determine whether the line and plane are perpendicular.
a) $x=-2-4 t, y=3-2 t, z=1+2 t$ and $2 x+y-z=5$.
b) $x=2+t, y=1-t, z=5+3 t$ and $6 x+6 y-7=0$.
18. Find an equation for the plane that passes through the origin and is parallel to the plane $7 x+4 y-2 z+3=0$.
19. Find the point of intersection of the line

$$
x-9=-5 t, y+1=-t, z-3=t, \quad-\infty<t<\infty
$$

and the plane $2 x-3 y+4 z+7=0$.
20. Find an equation for the plane that passes through $(2,4,-1)$ and contains the line of intersection of the planes $x-y-4 z=2$ and $-2 x+y+2 z=3$.
21. Find an equation for the plane through $(-2,1,5)$ that is perpendicular to the planes $4 x-2 y+2 z=-1$ and $3 x+3 y-6 z=5$.
22. Find an equation for the plane, each of whose points is equidistant from $(-1,-4,-2)$ and $(0,-2,2)$.
23. Show that the plane whose intercepts with the coordinate axes are $x=a, y=b$, and $z=c$ has the equation

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

EUCLIDEAN VECTOR SPACES

1. a) Find the standard matrix for the linear operator T on \mathbb{R}^{3} which is a composition of a reflection about the $x y$-plane followed by an orthogonal projection on the $x z$-plane followed by multiplication by scalar $\sqrt{2}$.
b) Find all vectors \vec{u} in \mathbb{R}^{3} such that $T(\vec{u})=\vec{u}$.
2. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be a linear operator defined by

$$
T((x, y, z))=(y+z,-x-z,-x+y+4 z) .
$$

Is T one-to-one?
3. The linear operator $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ is defined as follows:

$$
T((x, y, z))=(-2 x-4 y+3 z, 3 x+y, 5 x+4 y-2 z)
$$

a) Is T one-to-one?
b) Find T^{-1} if it exists.
4. Let \vec{u}, \vec{v} be two vectors in \mathbb{R}^{n}. Show that
a) If $\|\vec{u}+\vec{v}\|=\|\vec{u}-\vec{v}\|$ then \vec{u} and \vec{v} are orthogonal.
b) $\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2}=2\|\vec{u}\|^{2}+2\|\vec{v}\|^{2}$.
5. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be a linear operator such that $T((1,0,0))=(1,0,1), T((0,1,0))=(-1,1,2), T((0,0,1))=$ $(1,1,4)$.
a) Find standard matrix $[T]$ of the transformation T.
b) Is T onto?
6. Let $T: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ be a linear operator defined by

$$
T\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=\left(x_{1}, x_{1}+x_{2}, 2 x_{1}+x_{2}+x_{3}, x_{3}+x_{4}\right)
$$

a) Show that T is one-to-one?
b) Find a point $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}$ such that $T\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=(1,1,4,0)$.
7. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Show that T is one-to-one if and only if $\left\{\vec{v} \in \mathbb{R}^{n}: T(\vec{v})=0\right\}=\{0\}$.
8. Let $T_{1}, T_{2}, T_{3}, T_{4}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the following operators on \mathbb{R}^{2}
T_{1} : Reflection about the y axis.
T_{2} : Counterclockwise rotation through an angle of 30°.
T_{3} : Multiplication by 4.
T_{4} : Reflection about the line $y=x$.
a) Find the standard matrix for the operator $T_{4}\left(T_{3}\left(T_{2}\left(T_{1}\right)\right)\right)$
b) Is the operator one-to-one? Explain.
9. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ be transformations. Show that $[S T]=[S][T]$.
10. By inspection, determine the inverse of the given one-to-one linear operator.
a) the reflection about the x-axis.
b) the counterclockwise rotation through an angle of $\pi / 4$ in \mathbb{R}^{2}
c) multiplication by 3 .
d) the reflection about the $y z$-plane in \mathbb{R}^{3}.
11. Determine whether $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is a linear transformation.
a) $T((x, y, z))=(x, x+y+z)$;
b) $T((x, y, z))=(1,1)$.
12. Prove that if $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear transformation, then $T(\overrightarrow{0})=\overrightarrow{0}$, that is T maps the zero vector in \mathbb{R}^{n} to the zero vector in \mathbb{R}^{m}.
13. Determine whether multiplication by A is a one-to-one linear transformation.
а) $A=\left[\begin{array}{rr}1 & -1 \\ 2 & 0 \\ 3 & -4\end{array}\right]$
b) $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & 0 & 4\end{array}\right]$
14. Use the Cauchy-Schwarz formula to prove that for all real values of a, b and θ,

$$
(a \cos \theta+b \sin \theta)^{2} \leq a^{2}+b^{2}
$$

15. a) Let \vec{u} and \vec{v} be orthogonal vectors in \mathbb{R}^{n} such that $\|\vec{u}\|=1$ and $\|\vec{v}\|=1$. Find $\mathrm{d}(\vec{u}, \vec{v})$.
b) Draw a picture to illustrate this result.
