EXERCISE SET V

EIGENVALUES AND EIGENVECTORS

1. Find the eigenvalues and the corresponding eigenvectors of A^{20} , where

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

2.Let A and B be $n \times n$ matrices. If λ_1 is an eigenvalue of A, \vec{v} is a corresponding eigenvector of A, and if λ_2 is an eigenvalue of B, \vec{v} is a corresponding eigenvector of B (the same as for A), prove that

a) \vec{v} is an eigenvector of AB.

b) \vec{v} is an eigenvector of $A^5 + B^3$.

3. Let A be a 4×4 matrix. Suppose that the characteristic polynomial of A is

$$p(\lambda) = (\lambda - 1)(\lambda + 3)^2(\lambda - 2).$$

a) What are the eigenvalues of A? What are the eigenvalues of A^3 ?

b) Is there any nonzero vector $\vec{v} \in \mathbb{R}^4$ such that $A\vec{v} = 5\vec{v}$?

c) Prove that if λ is an eigenvalue of some square matrix B, \vec{u} is a corresponding eigenvector, then $\lambda + 7$ is an eigenvalue of B + 7I, and \vec{u} is a corresponding eigenvector.

d) Using part c), find all eigenvalues of matrix A + 7I.

4. Let *A* be the matrix below:

$$A = \left[\begin{array}{cc} -5 & -2 \\ 10 & 4 \end{array} \right].$$

a) Find the eigenvalues and eigenvectors of A.

b) Diagonalize A, that is, find a matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

c) Calculate the matrix A^{2003} .

5. Find the characteristic equations of the following matrices:

a)
$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
, b) $\begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$.

6. Find the eigenvalues and the eigenvectors of the matrices in Exercise 5.

7. Find the eigenvalues and the eigenvectors of the following matrices

$\mathbf{a}) \left[\begin{array}{rrr} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right],$	$\mathbf{b}) \begin{bmatrix} 3 & 0 & -5\\ 1/5 & -1 & 0\\ 1 & 1 & -2 \end{bmatrix},$	$\mathbf{c}) \begin{bmatrix} -2 & 0 & 1 \\ -6 & -2 & 0 \\ 19 & 5 & -4 \end{bmatrix},$
$\mathbf{d}) \begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix},$	$\mathbf{e}) \left[\begin{array}{rrrr} 5 & 0 & 1 \\ 1 & 1 & 0 \\ -7 & 1 & 0 \end{array} \right],$	$\mathbf{f}) \begin{bmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{bmatrix}.$

8. Find the eigenvalues and the eigenvectors of A^{25} for

$$A = \left[\begin{array}{rrr} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{array} \right].$$

9. Prove: If λ is an eigenvalue of an invertible matrix A and \vec{v} is a corresponding eigenvector, then $1/\lambda$ is an eigenvalue of A^{-1} and \vec{v} is a corresponding eigenvector.

10. Prove: If λ is an eigenvalue of A, \vec{v} is a corresponding eigenvector, and s is a scalar, then $\lambda - s$ is an eigenvalue of A - sI and \vec{v} is a corresponding eigenvector.

11. Find the eigenvalues and the eigenvectors of

$$A = \left[\begin{array}{rrrr} -2 & 2 & 3\\ -2 & 3 & 2\\ -4 & 2 & 5 \end{array} \right]$$

Then use Exercises 9 and 10 to find the eigenvalues and the eigenvectors of

a) A^{-1} , b) A - 3I, c) A + 2I.

12. Prove that if A is a square matrix, then A and A^T have the same eigenvalues. Hint: Look at the characteristic equation $|A - \lambda I| = 0$.

Remark: While the eigenvalues of A and A^T are the same, corresponding eigenvectors may not be same.

13. In each part determine whether the matrix is diagonalizable.

a)
$$\begin{bmatrix} 2 & -3 \\ 1 & -1 \end{bmatrix}$$
, b) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.

14. Find a matrix P that diagonalizes A, and determine $P^{-1}AP$.

$$\left[\begin{array}{rrrr} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right].$$

15. Determine whether the matrix is diagonalizable. If so, find a matrix P that diagonalizes A, and determine $P^{-1}AP$.

-1	4	-2	
-3	4	0	
3	1	3	

16. Compute A^{10} , where

$$A = \left[\begin{array}{cc} 1 & 0 \\ -1 & 2 \end{array} \right].$$

17. Compute A^{2301} , where

$$A = \left[\begin{array}{rrr} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array} \right].$$

18. Find A^n , if n is a positive integer and

$$A = \left[\begin{array}{rrrr} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{array} \right].$$