Exercise Set V

EIGENVALUES AND EIGENVECTORS

1. Find the eigenvalues and the corresponding eigenvectors of A^{20}, where

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

2.Let A and B be $n \times n$ matrices. If λ_{1} is an eigenvalue of A, \vec{v} is a corresponding eigenvector of A, and if λ_{2} is an eigenvalue of B, \vec{v} is a corresponding eigenvector of B (the same as for A), prove that
a) \vec{v} is an eigenvector of $A B$.
b) \vec{v} is an eigenvector of $A^{5}+B^{3}$.
3. Let A be a 4×4 matrix. Suppose that the characteristic polynomial of A is

$$
p(\lambda)=(\lambda-1)(\lambda+3)^{2}(\lambda-2) .
$$

a) What are the eigenvalues of A ? What are the eigenvalues of A^{3} ?
b) Is there any nonzero vector $\vec{v} \in \mathbb{R}^{4}$ such that $A \vec{v}=5 \vec{v}$?
c) Prove that if λ is an eigenvalue of some square matrix B, \vec{u} is a corresponding eigenvector, then $\lambda+7$ is an eigenvalue of $B+7 I$, and \vec{u} is a corresponding eigenvector.
d) Using part c), find all eigenvalues of matrix $A+7 I$.
4. Let A be the matrix below:

$$
A=\left[\begin{array}{rr}
-5 & -2 \\
10 & 4
\end{array}\right]
$$

a) Find the eigenvalues and eigenvectors of A.
b) Diagonalize A, that is, find a matrix P such that $P^{-1} A P=D$ where D is a diagonal matrix.
c) Calculate the matrix A^{2003}.
5. Find the characteristic equations of the following matrices:
а) $\left[\begin{array}{rr}3 & 0 \\ 8 & -1\end{array}\right]$,
b) $\left[\begin{array}{rr}10 & -9 \\ 4 & -2\end{array}\right]$.
6. Find the eigenvalues and the eigenvectors of the matrices in Exercise 5.
7. Find the eigenvalues and the eigenvectors of the following matrices
a) $\left[\begin{array}{rrr}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$,
b) $\left[\begin{array}{rrr}3 & 0 & -5 \\ 1 / 5 & -1 & 0 \\ 1 & 1 & -2\end{array}\right]$,
c) $\left[\begin{array}{rrr}-2 & 0 & 1 \\ -6 & -2 & 0 \\ 19 & 5 & -4\end{array}\right]$,
d) $\left[\begin{array}{rrr}-1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1\end{array}\right]$,
е) $\left[\begin{array}{rrr}5 & 0 & 1 \\ 1 & 1 & 0 \\ -7 & 1 & 0\end{array}\right]$,
f) $\left[\begin{array}{rrr}5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2\end{array}\right]$.
8. Find the eigenvalues and the eigenvectors of A^{25} for

$$
A=\left[\begin{array}{rrr}
-1 & -2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

9. Prove: If λ is an eigenvalue of an invertible matrix A and \vec{v} is a corresponding eigenvector, then $1 / \lambda$ is an eigenvalue of A^{-1} and \vec{v} is a corresponding eigenvector.
10. Prove: If λ is an eigenvalue of A, \vec{v} is a corresponding eigenvector, and s is a scalar, then $\lambda-s$ is an eigenvalue of $A-s I$ and \vec{v} is a corresponding eigenvector.
11. Find the eigenvalues and the eigenvectors of

$$
A=\left[\begin{array}{lll}
-2 & 2 & 3 \\
-2 & 3 & 2 \\
-4 & 2 & 5
\end{array}\right]
$$

Then use Exercises 9 and 10 to find the eigenvalues and the eigenvectors of
a) A^{-1},
b) $A-3 I$,
c) $A+2 I$.
12. Prove that if A is a square matrix, then A and A^{T} have the same eigenvalues.

Hint: Look at the characteristic equation $|A-\lambda I|=0$.
Remark: While the eigenvalues of A and A^{T} are the same, corresponding eigenvectors may not be same.
13. In each part determine whether the matrix is diagonalizable.
a) $\left[\begin{array}{ll}2 & -3 \\ 1 & -1\end{array}\right]$,
b) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$.
14. Find a matrix P that diagonalizes A, and determine $P^{-1} A P$.

$$
\left[\begin{array}{rrr}
2 & 0 & -2 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

15. Determine whether the matrix is diagonalizable. If so, find a matrix P that diagonalizes A, and determine $P^{-1} A P$.

$$
\left[\begin{array}{rrr}
-1 & 4 & -2 \\
-3 & 4 & 0 \\
-3 & 1 & 3
\end{array}\right]
$$

16. Compute A^{10}, where

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-1 & 2
\end{array}\right]
$$

17. Compute A^{2301}, where

$$
A=\left[\begin{array}{rrr}
1 & -2 & 8 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

18. Find A^{n}, if n is a positive integer and

$$
A=\left[\begin{array}{rrr}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]
$$

