1. $x = -\frac{2}{7}, \quad y = -\frac{5}{7}, \quad z = \frac{9}{28}, \quad w = -\frac{5}{14}.$ **2.** $x_1 = \frac{2}{5}s + t + \frac{1}{5}, \ x_2 = \frac{3}{5}s - 2t - \frac{1}{5}, \ x_3 = s, \ x_4 = t.$ **3.** $x_1 = s + 1, \ x_2 = 0, \ x_3 = -s, \ x_4 = s.$

4. There are four cases: i) a = 0, b = 2, ii) a = 0, $b \neq 2$, iii) $a \neq 0$, $b \neq 2$ and iv) $a \neq 0$, b = 2.

i) If a = 0, b = 2 then the reduced row-echelon form of the matrix is:

$$\left[\begin{array}{rrrr} 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right],$$

and in this case there is two-parameter solution (since there are 2 parameters (=free variables), namely x_1 and x_2). More precisely, the solution set is $\{x_1 = s, x_2 = t, x_3 = 1; s \in \mathbb{R}, t \in \mathbb{R}\}$.

ii) If $a = 0, b \neq 2$, then the reduced row-echelon form of the matrix is:

$$\left[\begin{array}{rrrr} 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Which shows that there is no solution in this case.

iii) If $a \neq 0$ and $b \neq 2$ then the row-echelon form of the matrix is:

$$\begin{bmatrix} \mathbf{1} & 0 & \frac{b}{a} & \frac{2}{a} \\ 0 & \mathbf{1} & \frac{4-b}{a} & \frac{2}{a} \\ 0 & 0 & \mathbf{1} & 1 \end{bmatrix}$$

Which implies there is a unique solution, namely, $x_1 = \frac{2-b}{a}$, $x_2 = \frac{b-2}{a}$, and $x_3 = 1$. iv) If $a \neq 0$ and b = 2 then the reduced row-echelon form of the matrix is:

$$\begin{bmatrix} \mathbf{1} & 0 & \frac{2}{a} & \frac{2}{a} \\ 0 & \mathbf{1} & \frac{2}{a} & \frac{2}{a} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Which implies there is one-parameter solution, namely $x_1 = -\frac{2}{a}s + \frac{2}{a}$, $x_2 = -\frac{2}{a} + \frac{2}{a}$, and $x_3 = s$.

5. a) $x_1 = -2s + 15$, $x_2 = -3s + 7$, $x_3 = s$. b) $x_1 = -4s - 2t + 10$, $x_2 = -t + 8$, $x_3 = s$, $x_4 = t$. c) $x_1 = 1$, $x_2 = 0$, $x_3 = -1$. d) No solution.

6. a) $a \in \mathbb{R} \setminus \{-3, 5\}$. b) a = -3 or a = 5. 7. a) $x_1 = \frac{2}{3}a - \frac{1}{9}b$, $x_2 = -\frac{1}{3}a + \frac{2}{9}b$. b) $x_1 = a - \frac{1}{3}c$, $x_2 = a - \frac{1}{2}b$, $x_3 = -a + \frac{1}{2}b + \frac{1}{3}c$. 8. If a = -4 then there is no solution. If a = 4 then there are infinitely many solutions. If $|a| \neq 4$ then there is exactly one solution.

9.
$$\alpha = \frac{\pi}{2}, \ \beta = \pi, \ \gamma = 0 \text{ and } \alpha = \frac{\pi}{2}, \ \beta = \pi, \ \gamma = \pi.$$

10. $\lambda = 2, \ \lambda = 4.$

11. $x = -\frac{53}{19}, y = \frac{53}{26}, z = -\frac{53}{5}.$

12. Suppose that $ad - bc \neq 0$. There are two cases: i) $a \neq 0$ or ii) a = 0. i) $(a \neq 0)$ Since $a \neq 0$, we can divide Row 1 by a to obtain the first leading 1:

Add
$$-c$$
 times Row 1 to Row 2:

$$\left[\begin{array}{cc} \mathbf{1} & \frac{b}{a} \\ 0 & \frac{ad-bc}{a} \end{array}\right]$$

 $\left[\begin{array}{cc} \mathbf{1} & \frac{b}{a} \\ & \\ c & d \end{array}\right].$

To obtain the second leading **1** divide Row 2 by $\frac{a}{ad-bc}$ (This is possible because $ad-bc \neq 0$):

$$\left[\begin{array}{cc} \mathbf{1} & \frac{b}{a} \\ & & \\ 0 & \mathbf{1} \end{array}\right].$$

Finally add $-\frac{b}{a}$ times Row 2 to Row 1.

ii) (a = 0) First note that: $b \neq 0$ and $c \neq 0$ (Otherwise ad - bc would be zero). Now, the augmented matrix has the form:

$$\left[\begin{array}{cc} 0 & b \\ c & d \end{array}\right].$$

Interchange Rows 1 and 2 to obtain a nonzero entry at the top of the leftmost nonzero column:

 $\left[\begin{array}{cc}c&d\\0&b\end{array}\right].$

Divide Row 1 by c to obtain the first leading 1:

$$\left[\begin{array}{cc} \mathbf{1} & \frac{d}{c} \\ 0 & b \end{array}\right].$$

Divide Row 2 by b to obtain the second leading 1:

$$\left[\begin{array}{cc} \mathbf{1} & \frac{d}{c} \\ 0 & \mathbf{1} \end{array}\right]$$

Adding $-\frac{d}{c}$ times Row 2 to Row 1 completes the Gauss-Jordan elimination.

13. a)
$$\begin{bmatrix} \mathbf{1} & 0 & 0 & 6 & 9 & 3 \\ 0 & \mathbf{1} & 0 & 2 & 5 & 2 \\ 0 & 0 & \mathbf{1} & -3 & -6 & -3 \end{bmatrix}.$$

b) $x_1 = -6s - 9t + 3$, $x_2 = -2s - 5t + 2$, $x_3 = 3s + 6t - 3$, $x_4 = s$, $x_5 = t$. 14. $\lambda = \frac{1+\sqrt{5}}{2}$, $\lambda = \frac{1-\sqrt{5}}{2}$. 15. a) a = 2. b) $x_1 = \frac{9}{7} - \frac{38}{7}$, $x_2 = -\frac{22}{7}s + \frac{124}{7}$, $x_3 = -\frac{10}{7} + \frac{22}{7}$, $x_4 = s$. 16. a) $\begin{bmatrix} 1 & -1 & 0 & 0 & -5 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$. b) $x_1 = s - 5$, $x_2 = s$, $x_3 = 4$, $x_4 = 0$. $\begin{bmatrix} 1 & 0 & 18 & 11 & 0 \\ 0 & 1 & -9 & -4 & 0 \end{bmatrix}$

17. a) The reduced row-echelon form of the first matrix is:

[1	0	18	11	0	0]
	0	1	-9	-4	0	0	
	0	0	0	0	1	0	·
	0	0	$ \begin{array}{r} 18 \\ -9 \\ 0 \\ 0 \end{array} $	0	0	1	

The second matrix is already in reduced row-echelon form.

b) The first system is not consistent, the second system is consistent.

c) Solution for the second system is: $x_1 = -3s + 5$, $x_2 = s$, $x_3 = 4$, $x_4 = 2$.

18. $x_1 = 0, x_2 = 0, x_3 = 0.$