Answer Key for Exercise Set I

1. $x=-\frac{2}{7}, \quad y=-\frac{5}{7}, \quad z=\frac{9}{28}, \quad w=-\frac{5}{14}$.
2. $x_{1}=\frac{2}{5} s+t+\frac{1}{5}, x_{2}=\frac{3}{5} s-2 t-\frac{1}{5}, x_{3}=s, x_{4}=t$.
3. $x_{1}=s+1, x_{2}=0, x_{3}=-s, x_{4}=s$.
4. There are four cases: i) $a=0, b=2$, ii) $a=0, b \neq 2$, iii) $a \neq 0, b \neq 2$ and iv) $a \neq 0, b=2$.
i) If $a=0, b=2$ then the reduced row-echelon form of the matrix is:

$$
\left[\begin{array}{llll}
0 & 0 & \mathbf{1} & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and in this case there is two-parameter solution (since there are 2 parameters ($=$ free variables), namely x_{1} and x_{2}). More precisely, the solution set is $\left\{x_{1}=s, x_{2}=t, x_{3}=\right.$ $1 ; s \in \mathbb{R}, t \in \mathbb{R}\}$.
ii) If $a=0, b \neq 2$, then the reduced row-echelon form of the matrix is:

$$
\left[\begin{array}{llll}
0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & \mathbf{1} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Which shows that there is no solution in this case.
iii) If $a \neq 0$ and $b \neq 2$ then the row-echelon form of the matrix is:

$$
\left[\begin{array}{cccc}
\mathbf{1} & 0 & \frac{b}{a} & \frac{2}{a} \\
0 & \mathbf{1} & \frac{4-b}{a} & \frac{2}{a} \\
0 & 0 & \mathbf{1} & 1
\end{array}\right]
$$

Which implies there is a unique solution, namely, $x_{1}=\frac{2-b}{a}, x_{2}=\frac{b-2}{a}$, and $x_{3}=1$. iv) If $a \neq 0$ and $b=2$ then the reduced row-echelon form of the matrix is:

$$
\left[\begin{array}{cccc}
\mathbf{1} & 0 & \frac{2}{a} & \frac{2}{a} \\
0 & \mathbf{1} & \frac{2}{a} & \frac{2}{a} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Which implies there is one-parameter solution, namely $x_{1}=-\frac{2}{a} s+\frac{2}{a}, x_{2}=-\frac{2}{a}+\frac{2}{a}$, and $x_{3}=s$.
5. a) $x_{1}=-2 s+15, x_{2}=-3 s+7, x_{3}=s$ b) $x_{1}=-4 s-2 t+10, x_{2}=-t+8, x_{3}=$ $s, x_{4}=t$. c) $x_{1}=1, x_{2}=0, x_{3}=-1$. d) No solution.
6. a) $a \in \mathbb{R} \backslash\{-3,5\}$. b) $a=-3$ or $a=5$.
7. a) $x_{1}=\frac{2}{3} a-\frac{1}{9} b, x_{2}=-\frac{1}{3} a+\frac{2}{9} b$. b) $x_{1}=a-\frac{1}{3} c, x_{2}=a-\frac{1}{2} b, x_{3}=-a+\frac{1}{2} b+\frac{1}{3} c$.
8. If $a=-4$ then there is no solution. If $a=4$ then there are infinitely many solutions. If $|a| \neq 4$ then there is exactly one solution.
9. $\alpha=\frac{\pi}{2}, \beta=\pi, \gamma=0$ and $\alpha=\frac{\pi}{2}, \beta=\pi, \gamma=\pi$.
10. $\lambda=2, \lambda=4$.
11. $x=-\frac{53}{19}, y=\frac{53}{26}, z=-\frac{53}{5}$.
12. Suppose that $a d-b c \neq 0$. There are two cases: i) $a \neq 0$ or ii) $a=0$.
i) $(a \neq 0)$ Since $a \neq 0$, we can divide Row 1 by a to obtain the first leading 1 :

$$
\left[\begin{array}{ll}
\mathbf{1} & \frac{b}{a} \\
c & d
\end{array}\right]
$$

Add $-c$ times Row 1 to Row 2:

$$
\left[\begin{array}{cc}
\mathbf{1} & \frac{b}{a} \\
0 & \frac{a d-b c}{a}
\end{array}\right] .
$$

To obtain the second leading $\mathbf{1}$ divide Row 2 by $\frac{a}{a d-b c}$ (This is possible because $a d-b c \neq 0$):

$$
\left[\begin{array}{ll}
\mathbf{1} & \frac{b}{a} \\
0 & \mathbf{1}
\end{array}\right]
$$

Finally add $-\frac{b}{a}$ times Row 2 to Row 1.
ii) $(a=0)$ First note that: $b \neq 0$ and $c \neq 0$ (Otherwise $a d-b c$ would be zero). Now, the augmented matrix has the form:

$$
\left[\begin{array}{ll}
0 & b \\
c & d
\end{array}\right] .
$$

Interchange Rows 1 and 2 to obtain a nonzero entry at the top of the leftmost nonzero column:

$$
\left[\begin{array}{ll}
c & d \\
0 & b
\end{array}\right] .
$$

Divide Row 1 by c to obtain the first leading 1 :

$$
\left[\begin{array}{ll}
\mathbf{1} & \frac{d}{c} \\
0 & b
\end{array}\right]
$$

Divide Row 2 by b to obtain the second leading 1 :

$$
\left[\begin{array}{ll}
\mathbf{1} & \frac{d}{c} \\
0 & \mathbf{1}
\end{array}\right] .
$$

Adding $-\frac{d}{c}$ times Row 2 to Row 1 completes the Gauss-Jordan elimination.
13. a) $\left[\begin{array}{rrrrrr}\mathbf{1} & 0 & 0 & 6 & 9 & 3 \\ 0 & \mathbf{1} & 0 & 2 & 5 & 2 \\ 0 & 0 & \mathbf{1} & -3 & -6 & -3\end{array}\right]$.
b) $x_{1}=-6 s-9 t+3, x_{2}=-2 s-5 t+2, x_{3}=3 s+6 t-3, x_{4}=s, x_{5}=t$.
14. $\lambda=\frac{1+\sqrt{5}}{2}, \lambda=\frac{1-\sqrt{5}}{2}$.
15. a) $a=2$. b) $x_{1}=\frac{9}{7}-\frac{38}{7}, x_{2}=-\frac{22}{7} s+\frac{124}{7}, x_{3}=-\frac{10}{7}+\frac{22}{7}, x_{4}=s$.
16. a) $\left[\begin{array}{rrrrr}\mathbf{1} & -1 & 0 & 0 & -5 \\ 0 & 0 & \mathbf{1} & 0 & 4 \\ 0 & 0 & 0 & \mathbf{1} & 0\end{array}\right]$.
b) $x_{1}=s-5, x_{2}=s, x_{3}=4, x_{4}=0$.
17. a) The reduced row-echelon form of the first matrix is: $\left[\begin{array}{rrrrrr}\mathbf{1} & 0 & 18 & 11 & 0 & 0 \\ 0 & \mathbf{1} & -9 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1}\end{array}\right]$.

The second matrix is already in reduced row-echelon form.
b) The first system is not consistent, the second system is consistent.
c) Solution for the second system is: $x_{1}=-3 s+5, x_{2}=s, x_{3}=4, x_{4}=2$.
18. $x_{1}=0, x_{2}=0, x_{3}=0$.

