
Answer Key for Exercise Set IV

VECTORS IN 2-SPACE AND 3-SPACE

1. x− 2y − z = 1.

2. (a) x = 1 + t, y = −t, z = 1 + t, t ∈ R.

(b) (2,−1, 2).

3. Write the equations of lines in the standard form:

`1 : x = 3 + 4t, y = 4 + t, z = 1, t ∈ R, `2 : x = −1 + 12s, 7 + 6s, 5 + 3s, s ∈ R.

At the intersection point(s) the z−coordinate should be 1 (because, the z−coordinates of the points
on `1 is always 1). So, find s which makes z = 1 on `2:

5 + 3s = 1 ⇒ s = −4/3.

Now, calculate the x and y coordinates of the possible intersection point:

y = 7 + 6 · −4
3

= −1, x = −1 + 12 · −4
3

= −17.

So, if there is an intersection point, it should be (−17,−1, 1). We need to check that `1 passes through
(−17,−1, 1). It is clear that, if t = −5 then x = −17, y = −1 and z = 1. Thus `1 and `2 intersect.

The equation of the plane containing these two lines, is: x− 4y + 4z + 9 = 0.

4. (a) x + y + z = 1,

(b) No.

5. There are infinitely many planes passing through (1, 1, 1) and parallel to the indicated line. Here it is
enough to find the equation of only one of these planes. It is clear that the plane z = 1 is such a plane.

6. (a) ~u · ~v = 2, ~u× ~v =

 2
−4

2

 .

(b) x− 2y + z + 1 = 0.

(c) 0.

7. Homework question.

8. ~PQ× ~PR =

 26
4

−7

.

(a) 26x + 4y − 7z = 33.

(b) 741
2 .

(c) 33√
741

.

9. ~v1 =

(
1+4

√
2

3
8+
√

2
3

)
and ~v2 =

(
2−4

√
2

3
4−
√

2
3

)
. It is clear that ~v = ~v1 + ~v2.

10. (a) Since ~u · (~v × ~w) =

∣∣∣∣∣∣
1 0 1

−1 1 0
1 2 3

∣∣∣∣∣∣ = 0, it follows that ~u, ~v and ~w lie in the same plane.

(b) 2π
3 .

11. (a)
√

10.

(b) 30.

12. x + z = 5.



13. (~a−~b)× (~a +~b) = (~a×~a) + (~a×~b)− (~b×~a)− (~b×~b). Note that ~a×~a = ~0, ~b×~b = ~0 (cross product of
parallel vectors are zero), and~b×~a = −~a×~b. Hence, (~a−~b)×(~a+~b) = ~0+(~a×~b)−(−~a×~b)−~0 = 2(~a×~b).

14. (a) Not parallel.

(b) Parallel.

(c) Parallel.

15. (a) Parallel.

(b) Not parallel.

16. (a) Not perpendicular.

(b) Perpendicular.

17. (a) Perpendicular.

(b) Not perpendicular.

18. 7x + 4y − 2z = 0.

19.
(
− 173

3 ,− 43
3 , 49

3

)
.

20. Homework question.

21. x + 5y + 3z − 18 = 0.

22. It is easy to show that the points P1 = (a, 0, 0), P2 = (0, b, 0) and P3 = (0, 0, c) lie on the plane
M : x

a + y
b + z

c = 1 (Here, a 6= 0, b 6= 0, c 6= 0):

P1 lies on M : a
a + 0

b + 0
c = a

a = 1,

P2 lies on M : 0
a + b

b + 0
c = b

b = 1,

P3 lies on M : 0
a + 0

b + c
c = c

c = 1.

Since a plane is determined uniquely by three points not lying on the same line, the plane whose
intercepts with the coordinate axes are x = a, y = b, and z = has the equation should be M .

EUCLIDEAN VECTOR SPACES

1. (a) [T ] =

 √
2 0 0
0 0 0
0 0 −

√
2

.

(b) There is no such a vector.

2. Yes, T is one-to-one.

3. (a) Yes, T is one-to-one.

(b) T−1((x, y, z)) = (−2x + 4y − 3z, 6x− 11y + 9z, 7x− 12y + 10z).

4. In class, we have proved the following:

~u · ~v =
1
4
‖~u + ~v‖2 − 1

4
‖~u− ~v‖2. (1)

(a) If ‖~u + ~v‖ = ‖~u− ~v‖, then it follows from (1) that ~u · ~v = 0, and hence ~u and ~v are orthogonal.

(b) Since ‖~u + ~v‖2 = ‖~u‖2 + 2~u · ~v + ‖~v‖2 and ‖~u− ~v‖2 = ‖~u‖2 − 2~u · ~v + ‖~v‖2 (see the Exercise 6, in
the lecture notes of Chapter 4), it follows that ‖~u + ~v‖2 + ‖~u− ~v‖2 = 2‖~u‖2 + 2‖~v‖2.

5. (a) [T ] =

 1 −1 1
0 1 1
1 2 4

.

(b) No.

6. (a) Since, [T ] =


1 0 0 0
1 1 0 0
2 1 1 0
0 0 1 1

 has determinant |[T ]| = 1, it is invertible and so T s one-to-one.

2



(b) P (1, 0, 2,−2).

7. We will prove the assertion in two parts:

i) If T is one-to-one, then {~v ∈ Rn : T (~v) = 0} = {0}:
First, let us show that T (~0) = ~0. Note that, ~0 = ~0 +~0. This implies with linearity property of T that
T (~0) = T (~0 + ~0) = T (~0) + T (~0) and and hence T (~0) = 2T (~0), which is possible only when T (~0) = ~0.
Since T is one-to-one, ~0 is the only vector in Rn such that T (~0) = ~0 and so, {~v ∈ Rn : T (~v) = 0} = {0}.
ii) If {~v ∈ Rn : T (~v) = 0} = {0}, then T is one-to-one:

Now, suppose that ~u and ~v be two vectors in Rn such that T (~u) = T (~v). We want to show that ~u = ~v.

Now, let ~w = ~u − ~v and consider T (~w). T (~w) = T (~u) − T (~v). Since T (~u) = T (~v) it follows that
T (~w) = ~0. From the assumption {~v ∈ Rn : T (~v) = 0} = {0}, we know that ~0 is the only vector whose
image is ~0. Thus, ~w = ~0 and hence ~u = ~v. This proves that T is one-to-one.

8. (a) [T4(T3(T2(T1)))] =
[

−2 2
√

3
−2

√
3 −2

]
.

(b) Yes, because its standard matrix is invertible.

9.

[ST ] =

 | | · |
ST (~e1) ST (~e2) · ST (~en)

| | · |

 .

Note that ST (~e1) = S(T (~e1)) = [S]T (~e1). So,

[ST ] = [S]

 | | · |
T (~e1) T (~e2) · T (~en)
| | · |

 = [S][T ].

10. (a) the reflection about the x−axis.

(b) the clockwise rotation through an angle of π/4 in R2.

(c) multiplication by 1
3 .

(d) the reflection about the yz−plane in R3.

11. (a) T is a linear transformation.

(b) T is not a linear transformation.

12. Proved in Exercise 7.

13. It is enough to check that whether {~v ∈ Rn : A~v = 0} = {0} or not. (see, Exercise 7). In other
another words, whether the homogeneous system A~v = ~0 has unique solution (the trivial solution) or
not. Check by yourselves that

(a) Invertible.

(b) Not invertible.

14. Consider the vectors ~u =
[

a
b

]
and ~v =

[
cos θ
sin θ

]
Cauchy-Schwarz formula says that:

|~u · ~v| ≤ ‖~u‖ ‖~v‖. (2)

Note that ~u ·~v = a cos θ+ b cos θ, ‖~u‖ =
√

a2 + b2 and ‖~v‖ =
√

cos2 θ + sin2 θ =
√

1 = 1. Putting these
values in (2), we get

|a cos θ + b cos θ| ≤
√

a2 + b2.

Taking squares of the both sides proves the assertion.

15. (a)
√

2.

(b) 1

1

@
@

@

√
2

3


