Answer Key for Exercise Set IV

VECTORS IN 2-SPACE AND 3-SPACE

1. $x-2 y-z=1$.
2. (a) $x=1+t, y=-t, z=1+t, t \in \mathbb{R}$.
(b) $(2,-1,2)$.
3. Write the equations of lines in the standard form:

$$
\ell_{1}: x=3+4 t, y=4+t, z=1, t \in \mathbb{R}, \quad \ell_{2}: x=-1+12 s, 7+6 s, 5+3 s, s \in \mathbb{R} .
$$

At the intersection point(s) the z-coordinate should be 1 (because, the z-coordinates of the points on ℓ_{1} is always 1). So, find s which makes $z=1$ on ℓ_{2} :

$$
5+3 s=1 \Rightarrow s=-4 / 3
$$

Now, calculate the x and y coordinates of the possible intersection point:

$$
y=7+6 \cdot \frac{-4}{3}=-1, \quad x=-1+12 \cdot \frac{-4}{3}=-17 .
$$

So, if there is an intersection point, it should be $(-17,-1,1)$. We need to check that ℓ_{1} passes through $(-17,-1,1)$. It is clear that, if $t=-5$ then $x=-17, y=-1$ and $z=1$. Thus ℓ_{1} and ℓ_{2} intersect.
The equation of the plane containing these two lines, is: $x-4 y+4 z+9=0$.
4. (a) $x+y+z=1$,
(b) No.
5. There are infinitely many planes passing through $(1,1,1)$ and parallel to the indicated line. Here it is enough to find the equation of only one of these planes. It is clear that the plane $z=1$ is such a plane.
6. (a) $\vec{u} \cdot \vec{v}=2, \vec{u} \times \vec{v}=\left(\begin{array}{r}2 \\ -4 \\ 2\end{array}\right)$.
(b) $x-2 y+z+1=0$.
(c) 0 .
7. Homework question.
8. $\overrightarrow{P Q} \times \overrightarrow{P R}=\left(\begin{array}{r}26 \\ 4 \\ -7\end{array}\right)$.
(a) $26 x+4 y-7 z=33$.
(b) $\frac{741}{2}$.
(c) $\frac{33}{\sqrt{741}}$.
9. $\vec{v}_{1}=\binom{\frac{1+4 \sqrt{2}}{3}}{\frac{8+\sqrt{2}}{3}}$ and $\vec{v}_{2}=\binom{\frac{2-4 \sqrt{2}}{3}}{\frac{4-\sqrt{2}}{3}}$. It is clear that $\vec{v}=\vec{v}_{1}+\vec{v}_{2}$.
10. (a) Since $\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{rrr}1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & 3\end{array}\right|=0$, it follows that \vec{u}, \vec{v} and \vec{w} lie in the same plane.
(b) $\frac{2 \pi}{3}$.
11. (a) $\sqrt{10}$.
(b) 30 .
12. $x+z=5$.
13. $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=(\vec{a} \times \vec{a})+(\vec{a} \times \vec{b})-(\vec{b} \times \vec{a})-(\vec{b} \times \vec{b})$. Note that $\vec{a} \times \vec{a}=\overrightarrow{0}, \vec{b} \times \vec{b}=\overrightarrow{0}$ (cross product of parallel vectors are zero), and $\vec{b} \times \vec{a}=-\vec{a} \times \vec{b}$. Hence, $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=\overrightarrow{0}+(\vec{a} \times \vec{b})-(-\vec{a} \times \vec{b})-\overrightarrow{0}=2(\vec{a} \times \vec{b})$.
14. (a) Not parallel.
(b) Parallel.
(c) Parallel.
15. (a) Parallel.
(b) Not parallel.
16. (a) Not perpendicular.
(b) Perpendicular.
17. (a) Perpendicular.
(b) Not perpendicular.
18. $7 x+4 y-2 z=0$.
19. $\left(-\frac{173}{3},-\frac{43}{3}, \frac{49}{3}\right)$.
20. Homework question.
21. $x+5 y+3 z-18=0$.
22. It is easy to show that the points $P_{1}=(a, 0,0), P_{2}=(0, b, 0)$ and $P_{3}=(0,0, c)$ lie on the plane $M: \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1($ Here $, a \neq 0, b \neq 0, c \neq 0)$:
P_{1} lies on $M: \quad \frac{a}{a}+\frac{0}{b}+\frac{0}{c}=\frac{a}{a}=1$,
P_{2} lies on $M: \quad \frac{0}{a}+\frac{b}{b}+\frac{0}{c}=\frac{b}{b}=1$,
P_{3} lies on $M: \quad \frac{0}{a}+\frac{0}{b}+\frac{c}{c}=\frac{c}{c}=1$.
Since a plane is determined uniquely by three points not lying on the same line, the plane whose intercepts with the coordinate axes are $x=a, y=b$, and $z=$ has the equation should be M.

EUCLIDEAN VECTOR SPACES

1. (a) $[T]=\left[\begin{array}{rrr}\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sqrt{2}\end{array}\right]$.
(b) There is no such a vector.
2. Yes, T is one-to-one.
3. (a) Yes, T is one-to-one.
(b) $T^{-1}((x, y, z))=(-2 x+4 y-3 z, 6 x-11 y+9 z, 7 x-12 y+10 z)$.
4. In class, we have proved the following:

$$
\begin{equation*}
\vec{u} \cdot \vec{v}=\frac{1}{4}\|\vec{u}+\vec{v}\|^{2}-\frac{1}{4}\|\vec{u}-\vec{v}\|^{2} . \tag{1}
\end{equation*}
$$

(a) If $\|\vec{u}+\vec{v}\|=\|\vec{u}-\vec{v}\|$, then it follows from (1) that $\vec{u} \cdot \vec{v}=0$, and hence \vec{u} and \vec{v} are orthogonal.
(b) Since $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}$ and $\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}$ (see the Exercise 6 , in the lecture notes of Chapter 4), it follows that $\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2}=2\|\vec{u}\|^{2}+2\|\vec{v}\|^{2}$.
5. (a) $[T]=\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 4\end{array}\right]$.
(b) No.
6. (a) Since, $[T]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$ has determinant $|[T]|=1$, it is invertible and so T s one-to-one.
(b) $P(1,0,2,-2)$.
7. We will prove the assertion in two parts:
i) If T is one-to-one, then $\left\{\vec{v} \in \mathbb{R}^{n}: T(\vec{v})=0\right\}=\{0\}$:

First, let us show that $T(\overrightarrow{0})=\overrightarrow{0}$. Note that, $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}$. This implies with linearity property of T that $T(\overrightarrow{0})=T(\overrightarrow{0}+\overrightarrow{0})=T(\overrightarrow{0})+T(\overrightarrow{0})$ and and hence $T(\overrightarrow{0})=2 T(\overrightarrow{0})$, which is possible only when $T(\overrightarrow{0})=\overrightarrow{0}$. Since T is one-to-one, $\overrightarrow{0}$ is the only vector in \mathbb{R}^{n} such that $T(\overrightarrow{0})=\overrightarrow{0}$ and so, $\left\{\vec{v} \in \mathbb{R}^{n}: T(\vec{v})=0\right\}=\{0\}$.
ii) If $\left\{\vec{v} \in \mathbb{R}^{n}: T(\vec{v})=0\right\}=\{0\}$, then T is one-to-one:

Now, suppose that \vec{u} and \vec{v} be two vectors in \mathbb{R}^{n} such that $T(\vec{u})=T(\vec{v})$. We want to show that $\vec{u}=\vec{v}$. Now, let $\vec{w}=\vec{u}-\vec{v}$ and consider $T(\vec{w}) . T(\vec{w})=T(\vec{u})-T(\vec{v})$. Since $T(\vec{u})=T(\vec{v})$ it follows that $T(\vec{w})=\overrightarrow{0}$. From the assumption $\left\{\vec{v} \in \mathbb{R}^{n}: T(\vec{v})=0\right\}=\{0\}$, we know that $\overrightarrow{0}$ is the only vector whose image is $\overrightarrow{0}$. Thus, $\vec{w}=\overrightarrow{0}$ and hence $\vec{u}=\vec{v}$. This proves that T is one-to-one.
8. (a) $\left[T_{4}\left(T_{3}\left(T_{2}\left(T_{1}\right)\right)\right)\right]=\left[\begin{array}{rr}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right]$.
(b) Yes, because its standard matrix is invertible.
9.

$$
[S T]=\left[\begin{array}{cccc}
\mid & \mid & \cdot & \mid \\
S T\left(\vec{e}_{1}\right) & S T\left(\vec{e}_{2}\right) & \cdot & S T\left(\vec{e}_{n}\right) \\
\mid & \mid & \cdot & \mid
\end{array}\right]
$$

Note that $S T\left(\overrightarrow{e_{1}}\right)=S\left(T\left(\overrightarrow{e_{1}}\right)\right)=[S] T\left(\overrightarrow{e_{1}}\right)$. So,

$$
[S T]=[S]\left[\begin{array}{cccc}
\mid & \mid & \cdot & \mid \\
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \cdot & T\left(\vec{e}_{n}\right) \\
\mid & \mid & \cdot & \mid
\end{array}\right]=[S][T] .
$$

10. (a) the reflection about the x-axis.
(b) the clockwise rotation through an angle of $\pi / 4$ in \mathbb{R}^{2}.
(c) multiplication by $\frac{1}{3}$.
(d) the reflection about the $y z$-plane in \mathbb{R}^{3}.
11. (a) T is a linear transformation.
(b) T is not a linear transformation.
12. Proved in Exercise 7.
13. It is enough to check that whether $\left\{\vec{v} \in \mathbb{R}^{n}: A \vec{v}=0\right\}=\{0\}$ or not. (see, Exercise 7). In other another words, whether the homogeneous system $A \vec{v}=\overrightarrow{0}$ has unique solution (the trivial solution) or not. Check by yourselves that
(a) Invertible.
(b) Not invertible.
14. Consider the vectors $\vec{u}=\left[\begin{array}{l}a \\ b\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ Cauchy-Schwarz formula says that:

$$
\begin{equation*}
|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\| . \tag{2}
\end{equation*}
$$

Note that $\vec{u} \cdot \vec{v}=a \cos \theta+b \cos \theta,\|\vec{u}\|=\sqrt{a^{2}+b^{2}}$ and $\|\vec{v}\|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=\sqrt{1}=1$. Putting these values in (2), we get

$$
|a \cos \theta+b \cos \theta| \leq \sqrt{a^{2}+b^{2}}
$$

Taking squares of the both sides proves the assertion.
15. (a) $\sqrt{2}$.
(b)

