EIGENVALUES AND EIGENVECTORS

1. Eigenvalues of A are 1 and 2. Eigenvectors corresponding to 1, are $t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $t \in \mathbb{R}$, and

eigenvectors corresponding to 2, are $t \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$, $t \in \mathbb{R}$. Hence, Eigenvalues of A^{20} are 1 and 2^{20} . Eigenvectors corresponding to 1, are $t \begin{bmatrix} -1\\0\\1 \end{bmatrix}$, $t \in \mathbb{R}$, and eigenvectors corresponding to 2^{20} , are $t \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$, $t \in \mathbb{R}$.

- 2. Since λ_1 is an eigenvalue of A, and \vec{v} is a corresponding eigenvector; and λ_2 is an eigenvalue of B, \vec{v} is a corresponding eigenvector, we have $A\vec{v} = \lambda_1\vec{v}$ and $B\vec{v} = \lambda_2\vec{v}$. Then:
 - (a) $(AB)\vec{v} = A(B\vec{v}) = A(\lambda_2\vec{v}) = \lambda_2(A\vec{v}) = \lambda_2(\lambda_1\vec{v}) = (\lambda_1\lambda_2)\vec{v}$. This shows that $\lambda_1\lambda_2$ is an eigenvalue, and \vec{v} is a corresponding eigenvector.
 - (b) $(A^5 + B^3)\vec{v} = A^5\vec{v} + B^3\vec{v} = \lambda_1^5\vec{v} + \lambda_2^3\vec{v} = (\lambda_1^5 + \lambda_2^3)\vec{v}$. This shows that $\lambda_1^5 + \lambda_2^3$ is an eigenvalue, and \vec{v} is a corresponding eigenvector.
- 3. (a) Eigenvalues of A are 1, -3 and 2. Eigenvalues of A^3 are 1, -27 and 8.
 - (b) No, because 5 is not an eigenvalue of A.
 - (c) See Exercise 10.
 - (d) Eigenvalues of A + 7I are 8, 4 and 9.

4. (a) Eigenvalues of A are 0, -1, and the corresponding eigenvectors are:

$$t\begin{bmatrix} 1\\ -5/2 \end{bmatrix}, t \in \mathbb{R}, \text{ and } t\begin{bmatrix} 1\\ -2 \end{bmatrix}, t \in \mathbb{R},$$

(b) $P = \begin{bmatrix} 1 & 1\\ -5/2 & -2 \end{bmatrix}$ diagonalizes A.
(c) $\begin{bmatrix} -5 & -2\\ 10 & 4 \end{bmatrix}$.

- 5. (a) $\lambda^2 2\lambda 3 = 0.$ (b) $\lambda^2 - 8\lambda + 16 = 0.$
- 6. (a) Eigenvalues are 3, -1, and the corresponding eigenvectors are: $t \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}, t \in \mathbb{R}, \text{ and } t \begin{bmatrix} 0 \\ 1 \end{bmatrix}, t \in \mathbb{R}.$
 - (b) Eigenvalue is 4, and the corresponding eigenvectors are: $t \begin{bmatrix} 3/2 \\ 1 \end{bmatrix}, \ t \in \mathbb{R}.$
- 7. (a) Eigenvalues are 1, 2, 3, and the corresponding eigenvectors are:

$$t \begin{bmatrix} 0\\1\\0 \end{bmatrix}, t \in \mathbb{R}, t \begin{bmatrix} -1/2\\1\\1 \end{bmatrix}, t \in \mathbb{R}, \text{ and } t \begin{bmatrix} -1\\1\\1 \end{bmatrix}, t \in \mathbb{R}.$$

- (b) Eigenvalues are 0, $\sqrt{2}$, $-\sqrt{2}$, and the corresponding eigenvectors are: $t \begin{bmatrix} 5/3\\1/3\\1 \end{bmatrix}$, $t \in \mathbb{R}$, $t \begin{bmatrix} 1/7(15+5\sqrt{2})\\1/7(-1+2\sqrt{2})\\1 \end{bmatrix}$, $t \in \mathbb{R}$, and $t \begin{bmatrix} 1/7(15-5\sqrt{2})\\1/7(-1-2\sqrt{2})\\1 \end{bmatrix}$, $t \in \mathbb{R}$.
- (c) Eigenvalue is -8, and the corresponding eigenvectors are:

$$t \begin{bmatrix} -1/6\\ -1/6\\ 1 \end{bmatrix}, t \in \mathbb{R}.$$

(d) Eigenvalue is 2, and the corresponding eigenvectors are:

$$t \begin{bmatrix} 1/3\\1/3\\1 \end{bmatrix}, t \in \mathbb{R}.$$

- (e) Eigenvalue is 2, and the corresponding eigenvectors are: $t \begin{bmatrix} -1/3 \\ -1/3 \\ 1 \end{bmatrix}, t \in \mathbb{R}.$
- (f) Eigenvalues are -4, 3, and the corresponding eigenvectors are: $t\begin{bmatrix} -2\\ 8/3\\ 1 \end{bmatrix}, t \in \mathbb{R}, \text{ and } t\begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix} t \in \mathbb{R}.$
- 8. Eigenvalues of A^{25} are 1, -1, and the corresponding eigenvectors are:

$$t \begin{bmatrix} -1\\1\\0 \end{bmatrix} + s \begin{bmatrix} -1\\0\\1 \end{bmatrix}, t, s \in \mathbb{R}, \text{ and } t \begin{bmatrix} 2\\-1\\1 \end{bmatrix} t \in \mathbb{R}.$$

- 9. Since λ is an eigenvalue of A and \vec{v} is a corresponding eigenvector, we have $A\vec{v} = \lambda\vec{v}$. Multiplying the both sides of the equation by A^{-1} from left, we see that $\vec{v} = A^{-1}\lambda\vec{v} = \lambda A^{-1}\vec{v}$. Dividing both sides of the equation by λ (think why, division by λ is possible, that is why $\lambda \neq 0$), we get $A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$, and this shows that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} and \vec{v} is a corresponding eigenvector.
- 10. Since λ is an eigenvalue of A and \vec{v} is a corresponding eigenvector, we have $A\vec{v} = \lambda\vec{v}$. Note that, $(A - sI)\vec{v} = A\vec{v} - sI\vec{v} = \lambda\vec{v} - s\vec{v} = (\lambda - s)\vec{v}$. Then, it is clear that $\lambda - s$ is an eigenvalue of A - sI, and \vec{v} is a corresponding eigenvector.
- 11. (a) Eigenvalues of A^{-1} are 1, 1/2, 1/3, and the corresponding eigenvectors are:

$$t \begin{bmatrix} 1\\0\\1 \end{bmatrix}, t \in \mathbb{R}, t \begin{bmatrix} 1/2\\1\\0 \end{bmatrix}, t \in \mathbb{R}, \text{ and } t \begin{bmatrix} 1\\1\\1 \end{bmatrix}, t \in \mathbb{R}.$$

(b) Eigenvalues of
$$A - 3A$$
 are $-2, -1, 0$, and the corresponding eigenvectors are:
 $t \begin{bmatrix} 1\\0\\1 \end{bmatrix}, t \in \mathbb{R}, t \begin{bmatrix} 1/2\\1\\0 \end{bmatrix}, t \in \mathbb{R}, \text{ and } t \begin{bmatrix} 1\\1\\1 \end{bmatrix}, t \in \mathbb{R}.$

(c) Eigenvalues of A + 2I are 3, 4, 5, and the corresponding eigenvectors are: $t \begin{bmatrix} 1\\0\\1 \end{bmatrix}, t \in \mathbb{R}, t \begin{bmatrix} 1/2\\1\\0 \end{bmatrix}, t \in \mathbb{R}, \text{ and } t \begin{bmatrix} 1\\1\\1 \end{bmatrix}, t \in \mathbb{R}.$

- 12. Eigenvalues of A^T are the roots of the polynomial $|A^T \lambda I|$. Since $|B^T| = |B|$ for any square matrix B, the same is true for $A^T \lambda I$. Thus $|A^T \lambda I| = |(A^T \lambda I)^T| = |(A^T)^T (\lambda I)^T|$. Since $(A^T)^T = A$ and $(\lambda I)^T = \lambda I$, we have $|A^T \lambda I| = |(A^T)^T (\lambda I)^T| = |A \lambda I|$. Hence the polynomials $|A^T \lambda I|$ and $|A \lambda I|$ are same. So, their roots are same, that is A^T and A has the same eigenvalues.
- 13. (a) Not diagonalizable.

(b) Not diagonalizable.

14.
$$P = \begin{bmatrix} -2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

15.
$$P = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4 \end{bmatrix} \text{ and } P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

16.
$$\begin{bmatrix} 1 & 0 \\ -1023 & 1024 \end{bmatrix}.$$

17.
$$\begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

18. Homework question.