Answer Key for Exercise Set V

EIGENVALUES AND EIGENVECTORS

1. Eigenvalues of A are 1 and 2. Eigenvectors corresponding to 1 , are $t\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right], t \in \mathbb{R}, \quad$ and eigenvectors corresponding to 2 , are $\quad t\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right], t \in \mathbb{R}$. Hence, Eigenvalues of A^{20} are 1 and 2^{20}. Eigenvectors corresponding to 1 , are $\quad t\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right], t \in \mathbb{R}, \quad$ and eigenvectors corresponding to 2^{20}, are $t\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right], t \in \mathbb{R}$.
2. Since λ_{1} is an eigenvalue of A, and \vec{v} is a corresponding eigenvector; and λ_{2} is an eigenvalue of B, \vec{v} is a corresponding eigenvector, we have $A \vec{v}=\lambda_{1} \vec{v}$ and $B \vec{v}=\lambda_{2} \vec{v}$. Then:
(a) $(A B) \vec{v}=A(B \vec{v})=A\left(\lambda_{2} \vec{v}\right)=\lambda_{2}(A \vec{v})=\lambda_{2}\left(\lambda_{1} \vec{v}\right)=\left(\lambda_{1} \lambda_{2}\right) \vec{v}$. This shows that $\lambda_{1} \lambda_{2}$ is an eigenvalue, and \vec{v} is a corresponding eigenvector.
(b) $\left(A^{5}+B^{3}\right) \vec{v}=A^{5} \vec{v}+B^{3} \vec{v}=\lambda_{1}^{5} \vec{v}+\lambda_{2}^{3} \vec{v}=\left(\lambda_{1}^{5}+\lambda_{2}^{3}\right) \vec{v}$. This shows that $\lambda_{1}^{5}+\lambda_{2}^{3}$ is an eigenvalue, and \vec{v} is a corresponding eigenvector.
3. (a) Eigenvalues of A are 1, -3 and 2. Eigenvalues of A^{3} are 1, -27 and 8.
(b) No, because 5 is not an eigenvalue of A.
(c) See Exercise 10.
(d) Eigenvalues of $A+7 I$ are 8, 4 and 9 .
4. (a) Eigenvalues of A are $0,-1$, and the corresponding eigenvectors are: $t\left[\begin{array}{r}1 \\ -5 / 2\end{array}\right], t \in \mathbb{R}$, and $t\left[\begin{array}{r}1 \\ -2\end{array}\right], t \in \mathbb{R}$,
(b) $P=\left[\begin{array}{rr}1 & 1 \\ -5 / 2 & -2\end{array}\right]$ diagonalizes A.
(c) $\left[\begin{array}{rr}-5 & -2 \\ 10 & 4\end{array}\right]$.
5. (a) $\lambda^{2}-2 \lambda-3=0$.
(b) $\lambda^{2}-8 \lambda+16=0$.
6. (a) Eigenvalues are $3,-1$, and the corresponding eigenvectors are: $t\left[\begin{array}{r}1 / 2 \\ 1\end{array}\right], t \in \mathbb{R}$, and $t\left[\begin{array}{l}0 \\ 1\end{array}\right], t \in \mathbb{R}$.
(b) Eigenvalue is 4, and the corresponding eigenvectors are:
$t\left[\begin{array}{r}3 / 2 \\ 1\end{array}\right], t \in \mathbb{R}$.
7. (a) Eigenvalues are 1, 2, 3, and the corresponding eigenvectors are: $t\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], t \in \mathbb{R}, \quad t\left[\begin{array}{r}-1 / 2 \\ 1 \\ 1\end{array}\right], t \in \mathbb{R}$, and $t\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right], t \in \mathbb{R}$.
(b) Eigenvalues are $0, \sqrt{2},-\sqrt{2}$, and the corresponding eigenvectors are: $t\left[\begin{array}{r}5 / 3 \\ 1 / 3 \\ 1\end{array}\right], t \in \mathbb{R}, \quad t\left[\begin{array}{r}1 / 7(15+5 \sqrt{2}) \\ 1 / 7(-1+2 \sqrt{2}) \\ 1\end{array}\right], t \in \mathbb{R}$, and $t\left[\begin{array}{r}1 / 7(15-5 \sqrt{2}) \\ 1 / 7(-1-2 \sqrt{2}) \\ 1\end{array}\right], t \in \mathbb{R}$.
(c) Eigenvalue is -8 , and the corresponding eigenvectors are:
$t\left[\begin{array}{r}-1 / 6 \\ -1 / 6 \\ 1\end{array}\right], t \in \mathbb{R}$.
(d) Eigenvalue is 2, and the corresponding eigenvectors are:

$$
t\left[\begin{array}{r}
1 / 3 \\
1 / 3 \\
1
\end{array}\right], t \in \mathbb{R}
$$

(e) Eigenvalue is 2, and the corresponding eigenvectors are:

$$
t\left[\begin{array}{r}
-1 / 3 \\
-1 / 3 \\
1
\end{array}\right], t \in \mathbb{R}
$$

(f) Eigenvalues are $-4,3$, and the corresponding eigenvectors are:

$$
t\left[\begin{array}{r}
-2 \\
8 / 3 \\
1
\end{array}\right], t \in \mathbb{R} \text {, and } t\left[\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right] t \in \mathbb{R} .
$$

8. Eigenvalues of A^{25} are $1,-1$, and the corresponding eigenvectors are:
$t\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right], t, s \in \mathbb{R}$, and $t\left[\begin{array}{r}2 \\ -1 \\ 1\end{array}\right] t \in \mathbb{R}$.
9. Since λ is an eigenvalue of A and \vec{v} is a corresponding eigenvector, we have $A \vec{v}=\lambda \vec{v}$. Multiplying the both sides of the equation by A^{-1} from left, we see that $\vec{v}=A^{-1} \lambda \vec{v}=\lambda A^{-1} \vec{v}$. Dividing both sides of the equation by λ (think why, division by λ is possible, that is why $\lambda \neq 0$), we get $A^{-1} \vec{v}=\frac{1}{\lambda} \vec{v}$, and this shows that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} and \vec{v} is a corresponding eigenvector.
10. Since λ is an eigenvalue of A and \vec{v} is a corresponding eigenvector, we have $A \vec{v}=\lambda \vec{v}$. Note that, $(A-s I) \vec{v}=A \vec{v}-s I \vec{v}=\lambda \vec{v}-s \vec{v}=(\lambda-s) \vec{v}$. Then, it is clear that $\lambda-s$ is an eigenvalue of $A-s I$, and \vec{v} is a corresponding eigenvector.
11. (a) Eigenvalues of A^{-1} are $1,1 / 2,1 / 3$, and the corresponding eigenvectors are:

$$
t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], t \in \mathbb{R}, \quad t\left[\begin{array}{r}
1 / 2 \\
1 \\
0
\end{array}\right], t \in \mathbb{R}, \text { and } t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], t \in \mathbb{R} .
$$

(b) Eigenvalues of $A-3 A$ are $-2,-1,0$, and the corresponding eigenvectors are:

$$
t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], t \in \mathbb{R}, \quad t\left[\begin{array}{r}
1 / 2 \\
1 \\
0
\end{array}\right], t \in \mathbb{R}, \text { and } t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], t \in \mathbb{R} .
$$

(c) Eigenvalues of $A+2 I$ are 3, 4, 5, and the corresponding eigenvectors are:
$t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], t \in \mathbb{R}, \quad t\left[\begin{array}{r}1 / 2 \\ 1 \\ 0\end{array}\right], t \in \mathbb{R}$, and $t\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], t \in \mathbb{R}$.
12. Eigenvalues of A^{T} are the roots of the polynomial $\left|A^{T}-\lambda I\right|$. Since $\left|B^{T}\right|=|B|$ for any square matrix B, the same is true for $A^{T}-\lambda I$. Thus $\left|A^{T}-\lambda I\right|=\left|\left(A^{T}-\lambda I\right)^{T}\right|=\left|\left(A^{T}\right)^{T}-(\lambda I)^{T}\right|$. Since $\left(A^{T}\right)^{T}=A$ and $(\lambda I)^{T}=\lambda I$, we have $\left|A^{T}-\lambda I\right|=\left|\left(A^{T}\right)^{T}-(\lambda I)^{T}\right|=|A-\lambda I|$. Hence the polynomials $\left|A^{T}-\lambda I\right|$ and $|A-\lambda I|$ are same. So, their roots are same, that is A^{T} and A has the same eigenvalues.
13. (a) Not diagonalizable.
(b) Not diagonalizable.
14. $P=\left[\begin{array}{rrr}-2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ and $P^{-1} A P=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$.
15. $P=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4\end{array}\right]$ and $P^{-1} A P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
16. $\left[\begin{array}{rr}1 & 0 \\ -1023 & 1024\end{array}\right]$.
17. $\left[\begin{array}{rrr}1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
18. Homework question.

